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Abstract.

The interplay of sunlight with clouds is a ubiquitous and often pleasant visual

experience, but it conjures up major challenges for weather, climate, environmental

science, and beyond. Those engaged in the characterization of clouds (and the clear

air nearby) by remote sensing methods are possibly even more confronted. The problem

comes, on the one hand, from the spatial complexity of real clouds and, on the other

hand, from the dominance of multiple scattering of light. The former ingredient

contrasts sharply with the still popular representation of clouds as homogeneous plane-

parallel slabs for the purposes of radiative transfer. In typical cloud scenes, the

opposite asymptotic transport regimes of diffusion and ballistic propagation coexist.

At sufficiently high altitudes and/or latitudes, the problem is compounded by the

occurrence of a myriad shapes of ice crystals. We survey the three-dimensional

atmospheric radiative transfer literature over the past fifty years and identify at present

three intertwining thrusts. How to assess the damage (bias) caused by 3D effects in

the operational 1D radiative transfer models? How to mitigate this damage? Can

we exploit 3D radiative transfer phenomena to innovate observation methods and

technologies? We quickly realize that the smallest scale resolved computationally or

observationally may be artificial but is nonetheless a key quantity that separates the 3D

radiative transfer solutions into two broad and complementary classes: stochastic and

deterministic. Both approaches draw on classic and modern statistical, mathematical

and computational physics.
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1. Context, Motivation and Outline

1.1. Overview of the Historical Record

Clouds have forever been objects of fascination by artists of every ilk and by scientists

alike. The earliest recorded observations and explanations of clouds certainly go back to

antiquity, when in most circumstances philosophy, mythology and natural science were

not yet distinguishable. Da Vinci, Renaissance man par excellence, experimented with

smoke and light. Newton famously explained the rainbow based on geometric optics,

dispersion and the hypothesis of microscopic spherically-shaped cloud/rain particles.

The emergence of cloud physics and dynamics can be traced to Luke Howard (1772-

1864) and, more specifically, his 1802 lecture “On the Modifications of Clouds [...]”

delivered to the London Askesian Society. Therein, he introduced a rough classification

of clouds (stratus, cumulus, cirrus, nimbus) that is still in use [1]; it was entirely based

on visual appearance, hence optics. Atmospheric visibility was studied empirically by

Bouguer, Lambert and Beer in that order from the early 1700s to mid-1800s. The law

of exponential transmission encapsulates their research. Lambert also uncovered his

famous “cosine” law of radiometry: a collimated beam deposits energy on a surface

according to its projection onto a plane perpendicular to the beam.

Just over a century ago, Gustav Mie published his famous paper [2] on the scattering

and absorption of electromagnetic (EM) waves by spheres in 1908. Peter Debye [3] was

working independently of the same problem at the same time, and published his paper

in 1909. They were however both preceeded by Ludvig Lorenz who investigated the

problem earlier, publishing his work in 1890 ... in Danish. The origin of multiple-

scattering theory has a similar pattern. Arthur Schuster’s 1905 paper [4] is often cited

as the first use of what will become known as two-stream theory in one-dimensional

radiative transfer, but previous and apparently independent studies had been published

by E. Lommel [5] and O. Chowlson [6] in 1887 and 1889, respectively. At any rate, the

foundations of radiative transfer theory per se were laid by Karl Schwarzschild and E.

Arthur Milne for the angularly-resolved case and by Arthur Eddington for the coarser

diffusion approximation. After that, radiative transfer becomes entangled with particle

transport. For the decades leading up to end of WWII, transport theory was driven

by early nuclear engineering projects: designing and building both steady-state and

super-critical devices. Of course, both reactors and weapons have their nature-made

counterparts in nuclear astrophysics. Astrophysics, both theoretical and observational,

has always been a driver for advances in radiative transfer per se.

The definitive reference for one-dimensional (1D) radiative transfer (RT) in

horizontally uniform plane-parallel atmospheres is Chandrasekhar’s 1950 monograph [7].

The earliest study we are aware of in three-dimensional (3D) RT in the usual sense of

horizontally non-uniform plane-parallel atmospheres is in Giovanelli’s 1959 paper [8], 50

years ago a the time of writing; he used 3D diffusion theory. Shortly before that, in 1956,

Richards had investigated paper [9] isotropic point sources embedded in dense uniform

clouds, again, where the diffusion regime prevails. In 1958, Chandrasekhar published
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Figure 1. Clouds. Left: The famous “blue marble” full-face portrait of the Earth

snapped by Apollo astronauts. Right: A complex cloud scene viewed from the Space

Shuttle.

a rigorous RT-based study [10] of a collimated beam (“pencil-beam”) penetrating a

uniform semi-infinite isotropically-scattering medium. For reasons that will become

clear as we proceed, we consider these non-uniform source problems as inherently 3D,

even if the optical medium itself is assumed uniform and even with solar RT in mind.

We will cover further developments of atmospheric 3D RT in the main body of the

paper, especially in the later sections (§§6–8).

At present, we can identify two equally important application areas for atmospheric

RT in general, and 3D in particular: broadband radiative energy budget estimation

and wavelength-specific optical remote sensing signal modeling. The magnitude of the

challenge posed by the spatial complexity of cloudiness is illustrated in Fig. 1.

1.2. Solar Radiation Energetics in the Presence of Clouds: Climate Modeling

Requirements on RT

Clouds are a naturally-occurring component of the climate system that are the planet’s

first line of defense for regulating its intake of solar energy—a key quantity in climate

balance. The global albedo of the Earth is ≈0.3, largely due to the powerful reflection

by the most opaque clouds (cf. Fig. 1a). Yet clouds are taken more and more for granted

by the climate modeling community. They are indeed mentioned only a handful of times

in the most recent “Summary for Policy Makers” by the Intergovernmental Panel for

Climate Change [11]. This is unfortunate because our skill in predicting the the effect of

clouds on the energy budget at the 50–200 km of interest—typical grid-scales of global

climate models (GCMs)—is not so good (cf. Fig. 1b). This is in large part because the

clouds themselves are not well predicted.

However, the required RT is also overly simplified by assuming that in each layer
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clouds occupy a fraction Ac, between 0 and 1, and that within the cloudy and cloud-free

portions horizontal uniformity is assumed. This makes the spatial aspect of the GCM

RT problem amenable to a weighted average of 1D computations. How to combine

the various layers’ accounting for their radiative interactions is more tricky; it usually

amounts to assuming either maximum or random ovelap geometry of the cloudy portions

depending on whether or not Ac goes to zero in between partially cloudy layers. The

treatment of the spatial transport problem is expedited with a two-stream or diffusion-

type model while the real computational budget of radiation on GCMs is expended in the

spectral domain. That is to be expected since the goal here is to compute by integration

over the entire solar spectrum how much radiation is reflected back to space and how

much solar heating occurs across the atmospheric layers and at the surface. Cloud

particles are not strong absorbers. Gases are, and clouds bounce the solar radiation

through the gases very efficiently. Now the spectral variations of gaseous absorption are

complex and shift with temperature and pressure.

The spectral domain thus gets the lion’s share of the CPU cycles in GCM solar

RT “parameterizations,” a.k.a. short-wave radiation “schemes;” this is even more

the case in the thermal IR (a.k.a. long-wave) spectrum where the RT is dominated

by ubiquitous emission and absorption processes rather than incoming radiation and

multiple scattering.

If we want to inject more realism into the spatial part of the solar RT problem in

GCMs, it has to be a very efficient computation. We briefly discuss such solutions,

with particular emphasis on the recent trend toward use of “multi-scale modeling

frameworks” (MMFs) in climate modeling [12, 13, and references therein]. MMFs embed

cloud resolving models (CRMs) with km-scale resolutions in each GCM grid-cell, thus

removing the need to predict Ac and effective optical properties for the uniform cloud.

Thus, a whole new 3D RT problem arises to get the energetics accurate enough, by some

dynamics-based criterion, at every point in the CRM.

1.3. Active and Passive Optical Diagnostics of Clouds: Remote Sensing Requirements

on RT

In solar heating rate estimation, we perform at a minimum full-range angular and

spectral integrals. Moreover, some level of spatial integration is usually in order: ∼km

scales for CRMs, 100s of km for GCMs, up to the planetary scale for elementary “0D”

energy balance models. Remote sensing requirements for RT sharply contrast with this

picture: pixel scales range from less than a km to 10s of km, radiance propagation

direction is at best sparsely sampled (often fixed at a single value), and narrow spectral

bands are used.

Although there is a new trend toward “smart” detector systems that process data

near the focal plane, satellite remote sensing data harvesting is currently band-width

limited. How many radiance samples can we measure at a reasonable signal-to-noise

ratio (SNR), store and forward to a ground station? Once received, the “level 0” data
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in raw bytes and packets is used to generate calibrated and geo-registered “level 1”

radiance data, ready for extraction of geophysical information by a wide variety of

retrieval techniques. This key operation produces “level 2” data on a pixel-by-pixel or

region-by-region basis in a given image. Once collected into a latitude-longitude grid it

becomes ”level 3” data, conveniently stratified and formatted for the end-users.

In one form or another, remote sensing always leads to an inverse problem. Of

particular interest to us are so-called “physics-based” retrieval techniques that invariably

start with forward RT modeling of remote sensing signals. Sensitivity studies will reveal

whether or not existing or planned observations, for known or assumed instrumental

error, will support the retrieval of an inherent property of the target. If there is

sensitivity, one can design a retrieval algorithm with the right level of complexity (e.g.,

1D or 3D RT), accuracy (e.g., account or not for polarization effects) and efficiency (e.g.,

pre-computed look-up tables versus RT computations on the fly).

In principle, the goal of inverse RT is to infer geometrical, structural and optical

properties of the medium that define the forward RT problem locally and globally;

such optical properties would describe for instance reflection, scattering and absorption

processes. In practice, end-users of remote sensing “products” are generally more

interested in the physical and chemical properties that determine the optical parameters

of the airborne particles; this implies another inverse problem to solve. There is therefore

a tacit pressure to combine these two non-trivial problems even though they might be

best treated separately. In our experience, this cannot be done without making further

assumptions about the medium, e.g., the particles are spherical and their radii are

log-normally distributed. Once such serial assumptions become buried in Algorithm

Theory-Based Documents (ATBDs), it becomes harder to trace the source of remote

sensing uncertainties.

Geometrical and structural properties of interest in cloud remote sensing are cloud

height, thickness, and shape (e.g., through its outer aspect ratio, where a slab has an

infinite aspect ratio). Deliverable optical properties of clouds (defined formally below)

will characterize scattering and/or absorption through transport coefficients—or derived

properties such as the mean-free-path—at the observation wavelength. Valid but more

difficult questions about physico-chemical cloud particle include their phase (liquid, ice,

or a mix of both), their size (e.g., via moments of the size distribution), and their

density. This last quantity is highly prized since it may, for instance, give a hint at the

effect of pollution on clouds. It can indeed increase the number of cloud condensation

nuclei (CCN), and thus affect the cloud radiative properties that matter for the climate

[14, 15, 16].

To provide answers to all of the above questions about clouds, multiple wavelengths,

multiple viewing angles and soon multiple polarization channels must brought to bear.

That is indeed the comprehensive suite of optical characteristics the next generation

of space-based instrument will combine [17, 18]. However, such a broad grasp in

radiometric detail will always require sampling tradeoffs; typically, they will involve

spectral and spatial resolution (and the later choice raises interesting questions in the
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RT-based signal modeling). It is therefore unlikely that a single optical sensor can

answer all the questions we have about the continuum of airborne particulates ranging

from aerosols to clouds. Multiple instruments looking at the same scene give us a better

chance. More and more, data will be fused from multiple satellites flying in a close

formation such as the current “A train” constellation [19].

From the signal modeling as well as engineering perspectives, we distinguish

“passive” and “active” instruments where the former use available sources while the

latter provide their own source of radiation. Even considering the cost in more complex,

expensive and energy-hungry technology, the active category is often the best choice.

The focus of this review is on the solar spectrum, with reflection and scattering of

sunlight being at the origin of the signal. We will nonetheless consider pulsed lasers

as an alternate source, and we talk about LIDAR (LIght raDAR). We also remind the

reader that longer wavelengths, from the thermal IR to the microwave region, have

also been used to probe clouds, both passively and actively. Active radio-frequency

instrumentation (RADAR) has long been used to monitor precipitation. However, for

the last couple of decades mm-wavelength sources have become available that reveal the

stuff that clouds are made of.

The authors’ institutional bias is toward satellite remote sensing, but suborbital

(airborne and ground-based) observations will also be considered in all of the above-

mentioned modalities. There are however cloud-probing technologies that defy this

classification. What would one call an airborne instrument [20, 21] that is flown into

the thick of a cloud where it fires laser pulses and its time-resolved radiometry of the

resulting multiply-scattered light is used to determine the cloud’s thickness and volume-

averaged extinction coefficient (a local measure of opacity)? Where is the remote in

this sensing? We would argue that this “in situ cloud lidar” is indeed a remote sensing

technology by virtue of the key role of RT in the signal prediction, hence data processing.

Moreover, the goal is to use light for detection-and-ranging of the cloud’s upper and lower

boundaries.

There are other remote sensing operations that defy some of the conventional

wisdom about what constitutes remote sensing. For instance, physical climate scientists

really want to know globally the upwelling top-of-atmosphere (TOA) flux across the

solar spectrum, a.k.a. the local albedo, as it varies in space and time. This amounts to

sampling at best a small number of radiances emanating from a given locale and inferring

a specifically weighted integral over all the radiances. NASA has dedicated entire

multi-platform instrumental missions, such as the Earth Radiation Budget Experiment

(ERBE) [22] and follow-on Clouds and the Earth’s Radiant Energy System (CERES)

[23], to this measurement. So an “angular model,” the tell-tale RT ingredient in remote

sensing, is required. A priori, determination of this cloud scene attribute is not going

after any of its geometrical, physical and chemical properties. A posteriori, the angular

model selection has a lot to do with the cloud scene properties, even if we are not

motivated here to retrieve them with specified accuracy. Insolation of the surface

across the solar spectrum is another important quantity in climate science, as well
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as in weather forecasting and environmental studies. Can it be determined by remote

sensing? Currently, the answer is: yes, but with difficulty. Given only TOA radiances,

this quantity is indeed even more dependent on assumptions in the required RT- and

composition-modeling. It is nonetheless a high-value target.

In summary, it is useful to separate the applications of RT in the cloudy atmosphere

into energetics and diagnostics because, in many respects, the solution techniques will

have a very different flavor. However, the threads of observational radiometry and

computational transport intertwine in ways we do not need to unravel completely.

Rather we should follow both strands and see the knots as opportunities.

1.4. Outline

In the following section, we describe the fundamental physical processes of atmospheric

radiation transport at the microscopic, mesoscopic and macroscopic levels. Armed with

a complete description of the local balance of the radiant energy budget, we introduce

outer cloud geometry in Section 3 and solve in representative cases the radiation

transport problem; several applications illustrate these solutions. We introduce in

Section 4 RT Green functions for dense scattering and at-most-weakly absorbing media

in space and in time; because of the remote sensing applications, particular attention

is given to the description of transport from boundary sources to boundary/external

observers. In Section 5, we partition the 3D radiation transport problem space into two

sectors: resolved and unresolved spatial variability, leading to different phenomenologies

and contrasting flavors of solution techniques.

Sections 6 and 7 are devoted respectively to the assessment and mitigation of the

“damage” that 3D radiation transport phenomena cause in operational applications that

depend on 1D RT models. Both energy budget estimation and cloud remote sensing

are covered with several examples for each of these two tasks. The tables are turned

in Section 8 where we describe, with examples, how 3D radiation transport phenomena

can be used to design new algorithms and new instruments for cloud remote sensing.

Finally, we offer some concluding remarks in Section 9.

We will assume the reader has a basic background in (statistical, mathematical

and computational) physics, but no more than curiosity about cloud physics, optics,

observation and radiation energetics. Atmospheric scientists in general, and scientists

from the National Aeronautics and Space Administration (NASA) in particular, are

prone to acute “acronymitis” (13 abbreviations defined so far, 91 in all). A list of

acronyms and abbreviations is therefore provided at the end of the article. An extensive

list of references will help the reader to delve further into the topic of realistic-yet-

practical modeling of solar radiation transport in the Earth’s cloudy atmosphere, and

possibly in other natural media.
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2. Radiative Transfer in the Cloudy Atmosphere: Optics with Statistical

and Quantum Physics

2.1. Emission, Propagation, Absorption and Scattering

The Sun is a distant source of thermal radiation that impinges on the Earth as an

essentially unidirectional spatially uniform flux F0λ measured conventionally in W/m2

broadband, and spectrally /nm. This flux indeed has a rich spectral structure that

departs from black-body radiance at the effective 5775 K temperature of the Sun’s

photosphere; it is tabulated in great detail by Kurucs [24]. The solar spectrum extends

in wavelength from λ ≈ 0.1 µm to ≈ 4 µm. It is divided into the ultra-violet (UV),

which is large absorbed by stratospheric ozone, the visible (VIS) and the infra-red (IR)

regions with partitions at 0.4 and 0.7 µm; the IR region of interest here is often referred

to as the near -IR (NIR) or reflected IR or solar IR to distinguish it from the thermal

IR (TIR) that peaks at 10–12 µm and is dominated by terrestrial radiation sources.

The integral of F0λ across all wavelengths is ≈1365 W/m2, a number that matters

of course tremendously for the Earth’s climate. It varies slightly and is monitored as

continuously and accurately as possible from space by missions such as SOlar Radiation

and Climate Experiment (SORCE) [25] and soon Glory [17]. The goal of solar radiation

transport is to track the fate of this influx of radiant energy from the somewhat elusive

TOA. It can be either reflected back to space (and clouds play a critical role in this

mechanism that regulates the global climate), transmitted to the surface (where it

is either absorbed or reflected), or absorbed by one of many possible atmospheric

constituents (that can be either in gaseous, liquid or solid phase). In this process

of energy-driven computation, one can also branch off to the prediction of signals for

all matter of sensors. This is the basis of physics-based atmospheric remote sensing

in the solar spectrum. It is advantageous to use the Sun’s abundant light in passive

modalities; there are also good reasons to turn to pulsed lasers in active ones. By far the

most popular laser technology used in this part of the spectrum is solid-state Nd:YAG

which transmits at 1064 nm, often frequency-doubled to 532 nm (as in green-colored

laser pointers), where molecules scatter 16× more and aerosols somewhat more as well.

Also, Si-based photon detection is at it most efficient in this spectral region.

Constituents of the molecular atmosphere of prime interest in solar spectrum are

N2, O2, O3, NO2, H2O, NH4, CO, and CO2. The first two, by far the most abundant

species, are responsible for the Rayleigh scattering that gives us the familiar blue hue of

clear skies (no clouds nor pollution). Selective absorption is how the atmosphere gains

heat at the expense of the solar radiation budget. All of the above molecules except N2

contribute to the absorption, primarily in the NIR. However, O2, the other symmetric

diatomic molecule in the mix, does not contribute much energetically speaking. This is

of course for basic quantum mechanical reasons that put their transitional, vibrational

and rotational energies in other parts of the electro-magnetic (EM) spectrum. Oxygen,

by contrast, happens to have a few narrow forbidden transitions between 0.63 and

0.78 µm known as the γ-, B- and A-bands. Figure 2 shows the details of the O2 A-band,
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which we will develop a strong interest in further on. The main role of ozone is to block

the solar UV from reaching altitudes below ∼35 km, fortunately for most life-forms.

Ozone also has a weak spectrally smooth feature across the VIS regions known as the

Chapuis band. For all practical purposes the stratospheric O3 layer defines the TOA for

solar radiation; at ≈6 pressure scale heights (≈8 km each), scattering is still negligible

(although detectable by sensitive lidar techniques).

In applications where spectral integrals must be estimated, scanning the

solar spectrum one-wavelength-at-a-time is not an efficient way of performing the

computation. Among the practical ways of capturing gaseous absorption (at a given

pressure and temperature), the most popular is probably the so-called “correlated-k”

method: within a spectral region small enough that other optical properties vary little,

the absorption coefficient is re-ordered by strength and weighted by its occurrence. In

essence, Lebesgue integration is used in a case where variability is too unwieldy for

a Reimann approach. For a detailed account of molecular absorption and associated

modeling techniques, we refer the interested reader to the classic monograph by Goody

and Yung [26].

In this review, we focus on scattering alone or in combination with absorption.

Beyond molecular/Rayleigh scattering, atmospheric optics at any given wavelength are

determined by the properties of aerosols (typically sub-micron size airborne particulates)

and cloud particles that range from ∼1 to many 10s of µm in size. The later can

be either liquid or solid depending on environmental conditions. At larger sizes, the

Stokes flow results in net fall speeds, so we are dealing with drizzle, rain and other

forms of precipitation. Aerosols and clouds interact radiatively (cf. Sect. 6.5) and

microphysically. Aerosols are indeed necessary to trigger cloud formation by “activation”

of tiny CCN. To a first approximation there is one cloud particle per CCN, so increasing

the small aerosol population by polluting the air affects cloud properties: more particles

compete for the same amount of condensed water, and end up smaller on average. We’ll

see that this “indirect” aerosol effect (in climate parlance) makes clouds more reflective

[15], as is dramatically illustrated by ship tracks in satellite imagery [28]. There are

further ramifications of this impact of pollution on the life-cycle of clouds, all the way

to the systematic suppression of precipitation [14]; apart from changing planetary albedo

by making clouds more persistent, this effect can lead to dire consequences for hydrology

and climate in the affected regions.

Beyond size range, the distinction between cloud and aerosol is much more about

constitution than density. Apart from trace chemicals in solution as well as small

internally mixed particulates, cloud particles are made of condensed water. Aerosols

by contrast have extremely diverse chemical make-up, with more or less propensity

for “wetting” within the prevailing water vapor. In spite of some preconceptions, this

distinction should not been seen as a question of altitude: there are indeed clouds at

ground level (e.g., fogs and blowing snow) and there are aerosols in the stratosphere

(e.g., from large volcanic eruptions). Nor is it about the local density: there are highly

opaque aerosol plumes (e.g., from wild fires) and there are “sub-visual” clouds. From



3D Transport of Solar Radiation in Clouds 11

Figure 2. Simulated O2 A-band spectra in reflection. Bottom: Fine structure of the

A-band displayed using, as a relevant example, the O2 optical thickness across a layer

from 860 to 911 hPa (c. altitudes 0.85 and 1.3 km), where one could find a typical

low-level cloud. Top: The reference spectrum (dashed) is for a background aerosol

atmosphere above an ocean surface in a typical state (Cox–Munk [27] model for 5 m/s

wind speed). The other (solid) is for the same situation plus a liquid water cloud at

911–860 hPa with an optical depth of 64. Line-by-line computations were coarsened

to the 0.0146 nm resolution of the Orbiting Carbon Observatory spectrometer. Both

spectra were normalized to maximum radiance (given, for reference, in the inset).

Computations were kindly provided by Dr. Hartmut Bösch (U. of Leicester, Dept. of

Physics & Astronomy, Earth Observation Science, Space Research Centre).
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the radiation transport perspective however, there are two extreme regimes that Nature

mixes in interesting and challenging ways: optically thin (a.k.a. clear-sky) regions, and

optically thick regimes.

This brings us to the fundamental issue of radiation propagation, which is at the

core of transport theory per se. The physicists will anticipate here a categorization based

on the Knudsen number, the ratio of the mean-free-path (MFP) to the characteristic

outer scale of the flow. We will soon spell out some serious physical drawbacks to the

conceptualization of radiation transport as a flow of “photons” through a participating

medium. Nonetheless, one can envision a kinetic theory framework and think about

optically thin regions of the atmosphere as dominated by “fast” ballistic motion, while

the optically thick ones are dominated by “slow” diffusive motion. In the following

three subsections, we will present in more technical detail radiation transport theory

and position it with respect to classic physical optics.

2.2. Microscopic Transport Model: Wave Equation

What does the Maxwell’s electro-magnetic (EM) wave theory of light as a vector wave

field bring to the table? Theoretically, it should be the staring point. Yet, until quite

recently, its role was however limited to the computation of the optical properties of

atmospheric particles, one at a time. How much does it absorb? How much does it

scatter, and how is that portion distributed according to scattering angle?

The reader will not be surprised to hear that the standard assumption about particle

shape is a sphere. The answers to the above questions then depend only on the non-

dimensional size parameter 2πr/λ where r is the radius of the sphere and the complex

index of refraction of the material, with the imaginary part controlling absorption. As

mentioned in Section 1, Lorenz–Mie theory for scattering and absorption of EM waves

by spheres was estblished over a century ago. The topic is still revealing some finer

but fascinating details in the area of resonances [29]. For in-depth surveys, we refer the

reader to the monographs by Bohren and Huffman [30]. As one might also suspect, the

spherical assumption is often a very coarse approximation, but for an important class

of airborne particles of interest here it is in fact a very good one: liquid cloud droplets,

ranging between ≈2 to ≈30 µm in radius. They indeed form the vast majority of low-

level clouds such as stratus (St), cumulus (Cu) and stratocumulus (Sc) where mean or

modal radii vary between 5 and 15 µm from cloud to cloud and (generally increasing)

from base to top. In turn, these cloud types dominate the radiation energy budget,

especially via reflectivity (i.e., their significant contribution to the Earth’s global albedo

of ≈0.3). Figure 3 shows the outcome of a Lorenz–Mie computation of the differential

scattering cross-section averaged over a population of randomly positioned droplets with

a so-called “Deirmendjian C1” size distribution [31] in a normalization explained further

on. Even in semi-log axes, we note the strong forward peak as well as the well-known

rainbow feature at ≈138◦. The former property is traceable to diffraction while the

latter is attributable, to first order, to geometric optics, a reasonable approximation in
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Figure 3. Scattering phase functions. The cloud “C1” phase function is plotted versus

θs for λ = 0.532 µm; for comparison, the (g = 0.85) Henyey–Greenstein in (33) and

Rayleigh scattering phase functions, P (θs) = (3/16π)(1 + cos2 θs), are also plotted.

the limit of large size parameters (r ≫ λ). For reference, the Rayleigh scattering case

is plotted as well; it applies to the opposite limit of small size parameters (r ≪ λ).

Many important atmospheric particulates are however very far from spherical, not

the least being ice crystals in elevated clouds that come in very diverse shapes (“habits”).

“Equivalent sphere” models have of course been used and abused in cloud and aerosol

optics to represent parametrically non-spherical particle populations [32, 33]. In the case

of cold clouds, typical ice crystal sizes are fortunately significantly larger than those of

droplets, 10s to 100s of µm. Ray-tracing computations—assuming geometrical optics—

therefore deliver reasonably accurate results in many cases, from regular hexagonal

shapes [34] to convoluted fractal morphologies [35]. However, present computational

resources open the road to practical high-accuracy methods that can capture the

optical properties of non-spherical particles, from the first principles of EM wave theory

[36, 37, 38, among others]. For a detailed survey of the topic, we refer the interested

reader to the monographs on this topic authored and edited by Mishchenko et al. [39, 40].

At any rate, most angular details in the single-particle differential scattering cross-

section are smoothed by averaging over the distribution of particle sizes, N(r), which

is typically quite broad. The persistent diffraction peak survives averaging as does the

rainbow that, to a good approximation, is a geometrical optics feature.

Along the spectral dimension, macroscopic objects such as aerosol and cloud
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particles already have much smoother variations than molecules, particularly for

absorption. Cross-sections in Lorenz–Mie theory are represented as follows:

ξλx(r) = πr2 × Qx(2πr/λ) (1)

where Qx is the efficiency ratio partitioned into scattering (x = s) and absorption (x

= a) for a given size parameter. No sub-index is used for the extinction cross-section,

the sum of scattering and absorption. In the limit of (liquid or ice) water spheres much

larger than λ, we have Q ≈ Qs ≈ 2; in the opposite (Rayleigh scattering) limit of very

small particles, we have Q ≈ Qs ∝ (r/λ)4, hence

ξ
(Rayleigh)
λs (r) ∼ r6/λ4. (2)

The overall cross-section for scattering‡ ξλs averaged over a size distribution N(r)

dominated by the population with r ≫ λ is thus expected to scale as r2, the mean square

of the particle size since that is the surface exposed to the incoming beam. Moreover,

the O(1) geometrical shape factor will be exactly 2 for spheres. Absorption is more

of a volume than surface process, so the corresponding cross-section ξλa will tend to

scale as r3. It is also much smaller than ξλs because the imaginary part of the complex

index of refraction is generally much smaller than the real part. Figure 4 shows the

total cross-section (times droplet density, “σ” curve), and the ratio of the scattering

to total cross-section (“ω0” curve). We note that droplet absorption starts in earnest

beyond 1.6µm, with a strong feature around 3µm, but at the same time there is little

solar energy left to absorb. We will see further on that multiple scattering makes bulk

absorption a very strong function of ξλa (cf. “1 − ω0” curve in Fig. 4), so the shorter

wavelengths contribute much more energy to the solar heating in clouds.

Wavelengths where particles absorb the most are at a premium in remote sensing

since they will give access to the effective particle radius

re = r3/r2. (3)

As for the total cross-section ξλ = ξλs + ξλa, it is empirically represented as a power law:

ξλ ∼ λ−α, (4)

where α is known as the Ångström exponent. Gamma distribution functions are a

popular 2-parameter representation of N(r), namely,

N(r) ∼ rb−1 exp(−(b − 1)r/rm), (5)

where rm is the mode (requiring b > 1) and b defines the shape of the distribution. For

instance, the above-mentioned C1 distribution is obtained for rm = 4 µm and b = 7

(leading to re = 6 µm). We note that (4) is exact for this assumption in regimes where

ξ(r) is a power law in the size parameter 2πr/λ.

In the limit of particles very small with respect to λ, Rayleigh scattering is retrieved

and α ≈ 4, which is the basis of the classic explanation of the blue color of clear skies.

‡ We use an overscore to denote averages over disorder in the particle population, both spatial and

with respect to size.
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Figure 4. Spectral dependence of cloud optical properties in the solar spectrum. Single-

scattering albedo ̟0 = ξs/ξ (short dashes) in (18), asymmetry factor g (long dashes)

from (20), and extinction σ = ξ× droplet density (solid line, r.-h. axis) are plotted

versus wavelength λ for the “C1” cloud droplet size distribution. The VIS/NIR dividing

line at 0.7 µm is highlighted, as well as where silicon-based sensors become too inefficent

and other materials must be sought for light detection in the “short-wave” IR or

(SWIR) where the available solar radiation is dwindling anyway.

In the limit of particles very large with respect to λ, geometric optics becomes ever more

accurate and we have ξλ(r) ∼ r2 irrespective of λ, and α is very small. Figure 4 shows

the spectral dependence of scattering and total cross-sections for cloud droplets based

on Lorenz–Mie theory and the C1 distribution across the solar spectrum. This small

value of α contributes to the characteristic whiteness of clouds, but so does multiple

scattering (as discussed further on). Aerosol particle distributions have α somewhere

in between the Rayleigh and geometric-optics limits, and its value from observations

clearly informs us about the particle size distribution.

All of the above contributions of EM wave theory are about transport coefficients

encapsulated in particle cross-sections for interaction with radiation. In particular,

nothing has been said about propagation through the cloudy atmosphere viewed as as

an optical medium, nor about multiple scattering. In the next subsection, we introduce

the highly successful—but purely phenomenological—theory of radiative transfer, with

or without polarization. It is noteworthy that rigorous derivation of the polarized (a.k.a.

“vector”) radiative transfer equation was obtained only quite recently by Mishchenko

[41] from microphysical predicates, i.e., Maxwell’s EM wave equations and statistical

optics. The key assumption is, as can be expected intuitively, that the medium is
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“dilute:” inter-particle distances are large with respect to λ. Each particle is therefore

in the far field of all the others. Mishchenko’s derivation is for steady sources and

spatially uniform particulate media. He generalized his derivation to spatially variable

media, but only when the “clumps” are small with respect to the MFP [42]. Much

of the work we present further on is for media that are spatially variable over a wide

range of scales that typically include the MFP, and we also have a strong interest in

transient sources (namely, pulsed lasers). So we hope to see derivations generalized in

these directions in the near future.

2.3. Mesoscopic Transport Model: Radiative Transfer Equation

Liouville’s theorem states that Hamiltonian particle dynamics under a constant external

force field F(x) preserves volume in the particle’s phase-space, hence phase-space density

f(t, x, v) for non-interacting particles. From there, Bolzmann’s equation expresses that

any change in f(t, x, v) for an ensemble of particles is due to collisions, thus providing

a basis for kinetic theory. The linear Boltzmann/transport equation follows from the

clear distinction between “material” particles, which are assumed very massive (hence

essentially stationary), and “transported” particles, which move relatively fast and can

be scattered or absorbed by the material. We can also drop the (F/mass) · ∇vf term

that would normally appear in the Lagrangian derivative Df/Dt since we can generally

neglect the effects of external force fields on massless particles. We are left with a simple

Eulerian relation for detailed balance in a small phase-space volume:

Df

Dt
=

∂f

∂t
+ v · ∇f = −losses + gains. (6)

Now suppose that we are dealing with monokinetic particles, so-called “1-group”

transport: v ≡ cΩ, and f 7→ f1δ(v − c)/c2, f1 is the particle density in the phase space

made of R
3 space for x and the associated two-dimensional space of directions for Ω. It

is tempting to view RT as a flow of light particles (photons), which it isn’t [43]. Radiant

energy is nonetheless redistributed dynamically in space and time, and we need to know

how. Also, we prefer to work with radiance (a.k.a. specific intensity)

Iλ(t, x,Ω) = cEλf1(t, x,Ω), with Eλ = hνλ = ch/λ (7)

where h is Planck’s constant. Radiance has units of W/m2/sr/nm. One oftens sees

spectral radiance Iν = Iλ|dλ/dν| using wavenumber ν measured in the conventional

spectroscopy units of 1/cm: ν = 107/λ, when λ is in nm. In view of (6), this 7-

dimensional field is constrained locally by the monochromatic integro-differential 3D

RT equation
[

1

c

(

∂

∂t

)

+ Ω · ∇ + σλ(x)

]

Iλ = σλs(x)

∫

4π

Pλ(x;Ω′ · Ω) Iλ(t, x,Ω′) dΩ′ + qλ(t, x,Ω). (8)

Here, we use

σλ(x) = n(x) × ξλ(x) (9)
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to denote the extinction coefficient in 1/m, where material particle density n is the

integral of N(r), cf. (5) over all values of r; like advection, this is a loss term for the

radiant energy budget in a small volume around the light beam (x,Ω). On the other

side of the equation, we have the gains. First, we have in-scattering where σλs = nξs

denotes the scattering coefficient while the “phase function” Pν derives from the the

differential cross-section for scattering, namely,

σλsPλ = n(x) × dξsλ

dΩ
, (10)

cf. Fig. 3; note that we normalize the phase function so that
∫

4π
Pλ(Ω

′ → Ω)dΩ′ =

1, ∀Ω. Second, we have qλ, denoting a (volume) source term.

Mathematically, there is no difference between the above time-dependent RT

equation and the linear Boltzmann equation used in particle transport theory, primarily

used for neutrons. Physically, they are fundamentally different since the RT equation

follows from Maxwell’s equations using statistical optics methods [43]. At present

however, the rigorous derivation requires steady sources and essentially uniform optical

media. The general (3D time-dependent) RT equation in (8) remains a phenomenology.

Note that we have neglected polarization. For the transport of polarization

quantities, we need to redefine I as a formal 4-dimensional vector, and Pλ as a 4×4

scattering matrix that can mix different polarization states. In his classic monograph [7],

Chandrasekhar gives the complete phenomenological elaboration of polarized/vector RT

while Mishchenko’s above-mentioned microphysical derivation [43] captures polarization

by definition, being grounded in EM wave theory. We have also assumed axially

symmetric scattering, meaning either spherical or randomly oriented material particles.

Consequently, RT computations can be performed one frequency at a time, and then

integrated as necessary over λ. Because of this simplification of the radiation transport

physics, we will drop λ (or ν) subscripts from most of the remainder. Finally, one might

be surprised that we retain the possibility of time-dependence in an article on clouds

and sunlight, a very steady source indeed over time-of-flight durations. The reason for

this is that we will develop further on a strong interest in sources that are Dirac δ’s in

time, both for heuristics and for observations using pulsed laser sources.

The important local scale in transport is the MFP ℓ, which is the sole parameter

of the basic transmission law in homogeneous media of infinite extent. Indeed, ignoring

momentarily time-dependence, scattering, internal sources and the spatial variability of

σ, (8) reduces to Ω · ∇I = −σI. For a given beam, distance from an arbitrary point

x along Ω is denoted s; we then have a simple ordinary differential equation (ODE) to

solve, dI/ds = −σI, hence I(s) = I0 exp(−σs) (Beer’s law). We can interpret physically

I(s)/I0 from this direct transmission law as the probability that the transported particle

will cover a distance s, or more, before suffering a collision of any type in an infinite

medium. The probability density function (PDF) of the random variable s is therefore

σ exp(−σs). The qth-order moment of this PDF is 〈sq〉 = Γ(q + 1)〈s〉q (q > −1) where

Γ(x) is Euler’s Gamma function and, for q = 1,

〈s〉 = ℓ = 1/σ (11)
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is the MFP, from the given extinction of the infinite uniform medium.§
What if the optical medium is spatially heterogeneous? Then the transmission law

becomes specific to the point x and direction Ω of departure:

T (x,Ω; s) = exp



−
s
∫

0

σ(x + Ωs′)ds′



 . (12)

So will the MFP, and all other moments of s. The spatial-directional and/or ensemble

average transmission law can be denoted T (s) = T (x,Ω; s). What are its properties?

This fundamental question has been investigated recently by the present authors [44],

as well as by Kostinski [45] who proceeds from a refreshing discrete-point statistical

perspective on particle transport theory in general. Either way, the prediction for T (s)

is that it is sub-exponential in the following sense: for the associated step PDF, |dT/ds|,
moments obey 〈sq〉 > Γ(q + 1)〈s〉q for q > 1. This implies that the large-s decay of

T (s) is slower than the exponential law dictated by the actual MFP derived from the

ensemble-average transmission law. Moreover, this ensemble-average MFP 〈s〉 is greater

than 1/σ(x) , the naive prediction using (11). For a large class of media with long-

range spatial correlations, it is indeed given by 1/σ(x) [44]. We can think of σ(x) as

the extinction associated with the mean particle density, i.e., n(x)ξ, noting that this

assumption is equivalent to the reasonable requirement of total mass or material particle

number conservation.

The general “3+2+1 dimensional” RT problem for a given medium becomes

completely determined only after we state boundary conditions, which we will differ until

we discuss specific cloud geometries. At present, we only need to note (i) that the optical

medium M ⊆ R
3 can be considered convex with no loss of generality (just set coefficients

to 0 as necessary) and (ii) that conditions on the boundary ∂M can be “absorbing” (i.e.,

no incoming radiation) or express primary sources (e.g., solar illumination) or secondary

sources (i.e., partial or total reflection, with or without bi-directional redistribution).

2.4. Macroscopic Transport Model: Diffusion Equation

In the case of clouds, we can go one step further away from the microphysical model

in §2.2, leading to the RT equivalent of the hydrodynamic limit in kinetic theory. This

involves averages of (8) over direction space.

2.4.1. Definitions and Derivation. Following the original derivation by Eddington in

1916 [46], we define the moments

J(t, x) =

∫

4π

I(t, x,Ω)dΩ, (13)

§ We use 〈angular brackets〉 to denote ensemble averages of quantities involved in random transport

processes.



3D Transport of Solar Radiation in Clouds 19

F(t, x) =

∫

4π

ΩI(t, x,Ω)dΩ, (14)

K(t, x) =

∫

4π

ΩΩI(t, x,Ω)dΩ, (15)

known in RT as the scalar (a.k.a. actinic) flux, vector flux, and tensor flux, respectively.

These quantities all have well-known counterparts in kinetic theory: U = J/c is the

energy density of the radiation field, F its current density, and P = K/c its pressure

tensor.

We then have the following expressions for the conservation of energy and

momentum:

c−1∂J

∂t
+ ∇ · F = − σa(x)J + qJ (t, x), (16)

c−1∂F

∂t
+ ∇ ·K = − σt(x)F + qF (t, x), (17)

where the new source terms follow from q(t, x,Ω) in (8) using the definitions in (13)–

(14). Two new coefficients have also appeared. First, we have the absorption coefficient,

σa = σ − σs = (1−̟0)σ, where we introduce the very useful “single scattering albedo”

parameter:

̟0 = σs/σ, (18)

Second, we have the transport extinction,

σt = (1 − g)σs + σa = (1 − ̟0g)σ, (19)

where

g = 2π

+1
∫

−1

µsP (µs)dµs, µs = Ω′ · Ω, (20)

is known as the “asymmetry factor” of the phase function, the mean cosine of the

scattering angle. It is notable that droplet-size distributions observed in boundary-layer

clouds yield g ≈ 0.85 in the solar spectrum (cf. Fig. 4) with remarkably small cloud-to-

cloud variability [47]. Higher-level ice clouds (and most aerosol) tend to have somewhat

smaller values, g ≈ 0.8 [48] or even less [49]. Particles much smaller that the wavelength

are essentially Rayleigh scatterers, and their g is close to 0.

Can we close the system of equations in (16)–(17)? A simple closure follows if we

brutally truncate the expansion of I(t, x,Ω) in spherical harmonics at first order (a “P1”

approximation in transport terminology):

I(t, x,Ω) ≈ [J(t, x) + 3Ω ·F(t, x)] /4π (21)

and, accordingly,

P (x,Ω′ · Ω) ≈ [1 + 3g(x)Ω′ · Ω] /4π (22)

for the phase function. This immediately tells us that the radiation pressure tensor

K/c from (15) is isotropic, i.e., off-diagonal components vanish and on-diagonal
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components are equipartitioned (each one equal to 1/3 of the radiant energy density

J/c). Substitution into (17), we obtain

∂tF + ∇J/3 = −σt(x)F + qF (t, x), (23)

that complements the exact conservation law in (16). The PDE system in (16) and (23)

is known as the telegrapher’s problem. It is causal in the sense that bulk velocities do

not exceed c.

However, the preferred diffusion model per se uses one more approximation: to

neglect the time derivative in (23), hence

F = −∇J/3σt(x) + qF (t, x)/σt(x). (24)

This is the desired constitutive law, a closed expression for the vector flux that can

be explicitly combined with (16). Indeed, it is radiative counterpart of Fick’s law of

diffusivity,

F = −(D/c)∇J, (25)

where

D(x) = c/3σt(x) = cℓt(x)/3, (26)

plus a local correction for source anisotropy, namely, ℓt(x)qF (t, x). Equations (16)

and (24) thus define the radiation diffusion model, as an approximation to full time-

dependent 3D RT theory. We can expect violations of causality in this approximation,

but they are limited for the most part to early times in the important case of “δ-in-time”

sources. We experimented with the more accurate telegrapher’s transport problem in

(16) and (23) [50] for space-time Green function estimation, but the resulting expressions

are complex, and it may be possible, in practice, to avoid those regions of space-time

where diffusion breaks down.

Finally, there are other derivations of the macroscopic transport model encapsulated

in diffusion theory, with the most insightful coming from asymptotic analysis of the

general RT equation; the interested reader is referred to the original papers by Larsen

[51] and Pomraning [52].

2.4.2. Consideration of Directional Details. In view of (25)–(26), we recognize that

the transport MFP

ℓt = 1/σt (27)

is the locally-defined scale that matters in diffusion theory; in the absence of absorption,

it is the only one. It is easy to see that ℓt is larger than ℓ in (11) by a factor

1

1 − ̟0g
=

∞
∑

n=0

(̟0g)n. (28)

It can be shown [53, 54], that the nth term in this sum is the contribution from the

order n in an infinite sequence of forward-biased scattering events, as parameterized by

g. We can thus think of the transport MFP as the distance covered on average in a
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forward-scattering medium by an incident collimated light beam before it has all but

lost any memory of its original direction.

Underlaying this spatial ramification of a directional memory effect, there is indeed

a diffusion process in direction space. If a light beam starts, for simplicity, with a vertical

direction cosine µ0 = 1, hence θ0 = 0, its first scatter will send it off by a random polar

angle θ1, according to the scattering phase function, in a random azimuthal directionφ1.

This nothing more than a first step in a discrete-time random walk on the unit sphere:

(θn, φn), n ∈ N. Since that space is finite, we can estimate that n⋆ ≈ 1/(1 − ̟0g) is

characteristic number of steps required to “dilute” the original collimated vertical beam

over the whole sphere.

Reconsidering Fig. 3, it is intuitively clear that this directional diffusion may be

better described as a 2-level process: first move around within the forward diffraction

peak, based on another (smaller) value of the elementary step variance, then populate

the rest of the sphere using an effective g that is smaller than 0.85. The first part

captures the spirit of “small-angle” approximation in RT. It plays an important role in

the transmitted radiation field of hazes and Ci clouds, and it is responsible for the silver

lining of optically thick 3D clouds (often a visually stunning phenomenon). However, it

is not important for the reflected radiation. Neither is it important for the truly diffuse

transmission at any optical depth, since it is perturbation around the direct beam. In

contrast, diffuse transmission will be dominated by the second angular diffusion process

controlled by an effective g′ < g. We will define g′ formally at the end of this subsection.

2.4.3. Extension of the Range of Validity. Under what conditions do we expect

the diffusion/P1 theory to be a reasonable approximation to atmospheric radiation

transport? It is in essence an asymptotic limit of transport [51, 52] where the small

parameter is ratio of the transport MFP to the outer scale of the system. In other

words, we recognize here the small Knudsen numbers that we have already mapped to

the opaque cloudy regions of the atmosphere. Another condition that favors diffusion

(thinking of long random walks) is weak absorption. In the limit of no absorption (no

volume sinks) whatsoever and no volume sources, the diffusion equations in (16) and

(24) can be combined into the familiar heat/diffusion equation:
[

c−1 ∂

∂t
−∇ · (D∇)

]

J = 0. (29)

If furthermore the boundary sources are steady and diffusivity is uniform, we obtain

the Laplace equation, −∇2J = 0, for which many analytical and numerical tools are

available.

What are diffusion/P1 theory’s primary vulnerabilities? Even in regimes where

physical intuition tells us that radiation trasnport should be diffusive, we can maybe

make improvements. Indeed, we suspect that the 2-term spherical harmonic expansions

of I(t, x,Ω) in (21) and certainly of P (x, µs) in (22) can be very unrealistic in clouds. In

the case of radiance, (21) fails near collimated sources such as solar or laser illumination.

In the case of the phase function, we recall that cloud particles have very forward-peaked



3D Transport of Solar Radiation in Clouds 22

scattering. To wit, (22) yields unphysical negative values in backscattering directions if

g(x) > 1/3, which includes the values of interest for clouds (0.75–0.85).

The fix is the same for both problems: the radiance field is broken naturally into

its un-collided and diffuse components, and the phase function is recast as a Dirac δ in

the forward direction—physically, just a boost in ballistic propagation—and a residual

2-term expansion. So we think of (21) as only the diffuse radiance, and replace the

1-parameter model phase function in (22) with the 2-parameter model in

P (x, µs) ≈
1

4π
[f(x)2δ(1 − µs) + (1 − f(x))(1 + 3g′(x)µs)] . (30)

This leads to the following rescaling of the local optical properties:

σ′ = (1 − ̟0f) σ,

1 − ̟′
0 =

1

1 − ̟0f
(1 − ̟0), (31)

1 − ̟′
0g

′ =
1

1 − ̟0f
(1 − ̟0g),

where f is the fraction of “δ-scattering.” The smaller extinction reflects the boost

in ballistic propagation while the effective absorption is increased. Finally, physically

meaningful values of

g′ =
g − f

1 − f
(32)

can now go up to 1/3(1−f) in (30) and (31); so it is better if we can rationalize f ≥ 2/3.

Following Joseph et al. [55], we can take f = g2 (g′ = g/(1 + g)) because it fits the

two first spherical-harmonic moments of the popular Henyey–Greenstein (H–G) model

phase function [56]:

P (µs) =

(

1

4π

)

1 − g2

(1 + g2 − 2gµs)3/2
, (33)

which has gl as its lth spherical-harmonic moment; see Fig. 3. For liquid water clouds,

where g ≈ 0.85, we get f ≈ 0.72 (exceeding 2/3), hence σ′ ≈ 0.28σ and g′ ≈ 0.46

when ̟′
0 = ̟0 = 1. Alternatively, the whole diffraction peak—half of the scattered

energy for particles with very large size parameters (Babinet’s principle)—can be recast

as prolonged propagation in the original direction: hence f = 0.5 (not exceeding 2/3),

thus σ′ ≈ 0.5σ and g′ ≈ 0.7 when ̟′
0 = ̟0 = 1.

3. Cloud Geometry Models, Solutions of the Corresponding RT Problems,

and Applications

Several things that happen to the radiant energy after leaving its source have already

been mentioned—propagation, scattering, and absorption—but more exist. Radiation

can escape the medium altogether through a boundary, or it can be detected either

inside the medium or after escape. When integrated over direction and space (and

optionally over time and wavelength) escaping radiation matters hugely for the radiant
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energy balance of the medium. The energetic cost of light detection is minuscule since

even wide-angle instruments have tiny apertures compared to the size of the medium.

The presence of in-situ sensors is never invasive enough to affect the radiance field being

measured, and remote sensing instruments only borrow from escaped radiation anyway.

This leads us to the natural mathematical completion of the RT problem statement

by setting the boundary conditions (BCs). In a nutshell, we need to quantify the radiant

energy entering or re-entering, via reflection, the medium through ∂M, the boundary of

a convex set M ⊂ R
3 where we wish to solve the RT equation.

3.1. The Plane-Parallel Slab

3.1.1. Boundary Conditions and Escaping Radiation. The simplest possible cloud

geometry is a plane-parallel slab Mpp(H) = {x ∈ R
3; 0 < z < H} and the simplest

BCs are the “absorbing” type, expressing that no radiation enters Mpp(H):

I(t, x, y, 0,Ω) = 0, Ωz = µ > 0, (34)

I(t, x, y, H,Ω) = 0, Ωz = µ < 0, (35)

for t ≥ 0 (the usual time domain) and (x, y)T ∈ R
2. We pause here to introduce

here the standard (z-axis) polar angles (θ, φ) to describe Ω, thus Ωz = µ = cos θ and

Ωx(y) =
√

1 − µ2 cos(sin)φ. Of course, in the above case of absorbing BCs, the source

term q(t, x,Ω) in (8) will not vanish everywhere and it can indeed be used to specify

solar irradiation of Mpp(H). We model this internal source as a steady spatially uniform

mono-directional beam aligned with Ω0 = Ω(θ0, φ0) that is directly transmitted from

the z = 0 plane, and then once scattered:

q(x,Ω) = F0 exp



−
z
∫

0

σ

(

x − Ω0x
z − z′

Ω0z
, y − Ω0y

z − z′

Ω0z
, z′
)

dz′

Ω0z





× σs(x) p(x,Ω0 · Ω), (36)

where F0 is the (spectral) solar flux in W/m2(/nm of wavelength, as needed). Note that

we have encoded here a beam entering the slab at z = 0, which we will always view as

the illuminated upper boundary (z increases downward here). Alternatively, we can set

q(x,Ω) ≡ 0 and use a straightforward variation of (34) to do the same job:

I(x, y, 0,Ω) = F0δ(Ω −Ω0), µ, µ0 > 0, (37)

where µ0 = Ω0z . In this case, the estimated radiance field will contain the un-collided

(directly transmitted) light as well as the diffuse light. For an isotropic source, the r.h.

side of (37) would be simply F0/π. We note that we can assume F0 = 1 without loss of

generality since the linearity of the RT equation can be invoked to sum over wavelengths,

as weighted by F0λ, after the fact.

If the cloudy medium Mpp(H) is above a partially reflective surface at z = H , then

there is re-entering radiation to account for. In this case, (35) is modified, becoming

I(x, y, H,Ω) = α(x, y)

∫

µ′>0

Ps(x, y,Ω′ → Ω)I(x, y, H,Ω′)dΩ′, µ < 0, (38)
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which is designed to look like the in-scattering term in (8). Here, α is the local surface

albedo, defined as the ratio of up-welling to down-welling hemispherical fluxes,

F±(x) =

+π
∫

−π

dφ

±1
∫

0

I(x,Ω)µdµ, (39)

at z = H :

α(x, y) = F−(x, y, H)/F+(x, y, H). (40)

Ps is associated surface phase function, normalized to
∫

µ′>0
Ps(Ω

′ → Ω)dΩ′ = 1, ∀Ω;

it is used here as a representation of the bi-directional reflectance distribution function

(BRDF) [57, 58]. Two contrasting examples of surface scattering/reflection are the

isotropic (a.k.a. Lambertian) case, Ps(Ω
′ → Ω) = µ′/π, and the specular (a.k.a.

Fresnel) case, Ps(Ω
′ → Ω) = δ(µ′ + µ)δ(φ′ − φ).

Of particular interest in cloud remote sensing are the radiance fields that describe

steady solar radiation escaping the plane-parallel medium at its upper and lower

boundaries: I(x, y, 0,Ω), (µ < 0) and I(x, y, H,Ω), (µ > 0), respectively for observers

above and below the cloud layer. It is convenient to normalize the reflected radiance

such that it reads as the effective albedo the cloud would have if the (sampled) radiance

field was uniform in direction:

R(x, y,Ω) = πI(x, y, 0,Ω)/µ0F0, µ < 0; (41)

T (x, y,Ω) = πI(x, y, H,Ω)/µ0F0, µ > 0, (42)

where we have similarly recast the transmittance field. These functions describe

how the cloud layer redistributes the spatially uniform and unidirectional solar beam

both horizontally and directionally. In space-based observation, one is often looking

straight down (Ω = −ẑ) at the nadir radiance field while the detector overflies

the scene. In ground-based observation, a static detector often looks straight up

(Ω = +ẑ) and captures zenith radiance as the clouds are advected by (Taylor’s “frozen

turbulence hypothesis” is often invoked to interpret a time-series of zenith radiance as

an approximation of the horizontal spatial variations).

In the simpler diffusion theory for RT in dense clouds, the BCs need to be stated as

well. Physically, one needs to constrain the fluxes of radiant energy crossing the upper

and lower boundaries. In plane-parallel geometry, we first need to evaluate hemispherical

fluxes in (39) that cross an arbitrary constant-z plane in the ± directions, for given J

and F:

F± =
J/2 ± Fz

2
, (43)

from (13)–(14). Restoring time-dependence, the absorbing BCs in (34)–(35) thus

become

4F+(t, ~ρ, 0) = J(t, ~ρ, 0) + 3χFz(t, ~ρ, 0) = 0, (44)

4F−(t, ~ρ, H) = J(t, ~ρ, H) − 3χFz(t, ~ρ, H) = 0, (45)
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for all ~ρ = (x, y)T ∈ R
2 and t > 0 and where, until further notice, we take χ = 2/3.

In the above case of absorbing boundaries, we need at least one non-vanishing volume

source term. For the steady solar beam, (36) yields

qJ(x) = F0 σs(x, y, z)

× exp



−
z
∫

0

σ

(

x − Ω0x
z − z′

Ω0z
, y − Ω0y

z − z′

Ω0z
, z′
)

dz′

Ω0z



 (46)

qF (x) = qJ (x) g(x)Ω0. (47)

When the surface at the lower boundary is partially reflective, as in (38), we mandate

the time-dependent version of (40) and, accordingly, the l.h. side of (45) becomes

[1 − α(~ρ)]J(t, ~ρ, H) − 3χ[1 + α(~ρ)]Fz(t, ~ρ, H) = 0. (48)

Solar radiation escaping a plane-parallel cloud, a priori with internal 3D structure,

is characterized in diffusion theory by the local hemispheric fluxes

R(~ρ) = F−(~ρ, 0)/µ0F0 = J(~ρ, 0)/2µ0F0, (49)

T (~ρ) = F+(~ρ, H)/µ0F0 = J(~ρ, H)/2µ0F0, (50)

when (44)–(45) have been used, recalling that this assumes the internal source model in

(46)–(47). Consequently, the transmittance field here is only for the diffuse component;

if total transmittance is required, one must add the local directly transmitted flux

(normalized to the incident flux):

Tdir(x, y) = exp



−
H
∫

0

σ

(

x − Ω0x
H − z

Ω0z

, y − Ω0y
H − z

Ω0z

, z

)

dz

Ω0z



 .

For an isotropic boundary source, we have F0/π on the r.h. side of (37); its diffusion

counterpart in (44) is then

4F+(t, ~ρ, 0) = J(t, ~ρ, 0) + 3χFz(t, ~ρ, 0) = 4F0. (51)

Notably, the same happens to the collimated source model at the upper boundary in

(37) since the diffusion framework cannot distinguish directional and isotropic boundary

sources. In this case, it is conventional to treat χ, which multiplies Fz(t, ~ρ, 0) and

Fz(t, ~ρ, H) in boundary conditions (44)–(45), as an adjustable parameter that can

differ—although typically not much—from 2/3. This O(1) numerical parameter is

known as the “extrapolation length” (reckoned in units of ℓt) and it enables diffusion

results to follow more closely transport theoretical predictions. Physically, χ is used to

compensate for the fully-expected weakness of diffusion theory in the radiative boundary

layer, i.e., up to 1–2 times ℓt in vertically-measured distance from either boundary. There

is no violation of energy conservation here as long as the same substitution is made

in (49)–(50) for the hemispherical fluxes in the opposite direction (i.e., for escaping

radiation). Specifically, we now have

R(~ρ) = J(~ρ, 0)/2F0 − 1 (52)

T (~ρ) = J(~ρ, H)/2F0, (53)
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where it is understood that (i) the reflected flux must now be derived from an estimate

of J(~ρ, 0) that includes the incoming radiation, and (ii) the transmitted flux is now

diffuse + direct.

Using the constitutive relation in (24), we can eliminate the vertical component

of the vector flux in favor of the derivative in z of J in all of the above BCs for the

diffusion model. This tells us that, with respect to the 2nd-order PDE problem in J ,

the most general expressions for BCs found in (48) and (51) are of the 3rd-type (a.k.a.

Robin BCs) [59]. When this kind of BC becomes a complication, e.g., gets in the way of

deriving an analytical solution [60], one can approximate them with 1st-type/Dirichlet

BCs by extending the domain from z = 0 to z = −χℓt where we set J = 4F0, and from

z = H to z = H + χℓt where we set J = 0, in the absence of a reflective surface. In the

presence of a partially reflective surface, extend further to z = H + χℓt(1 + α)/(1− α).

In the case of a 100% reflective surface (α = 1), we are in a case of mixed BCs where

we impose a Robin BC at z = 0 and the 2nd-type/Neumann BC, Fz = 0, at z = H .

3.1.2. Mainstream One-Dimensional Radiative Transfer. So far, we have made no

assumptions about the internal structure of the plane-parallel medium, nor about the

spatial variations of the optional lower surface BRDF. A widespread assumption that

eases computations is exact translational symmetry in the horizontal (~ρ) plane. This

leads to so-called 1D RT theory‖ where optical properties and at least the radiance field

can still vary in the vertical (z) direction. This is of course a gross approximation of

real clouds that should always be—but still too rarely is—questioned before use. All

depending on the specifics of the application (cloud type, tolerance to error, etc.), it is

not necessarily a bad approximation, but often is (cf. §6).

For a comprehensive survey of computational techniques for solving the 1D

RT equation, we refer the interested reader to the monograph edited by Lenoble

[61]; the most popular are characterized by their approach to Ω-space—spherical

harmonics (“PN” methods), discrete ordinates (“SN” methods)—followed by the

adopted solution in z-space: iterative solution of coupled ODEs, Gauss–Seidel

elimination, eigenvalue methods, invariant embedding, “adding/doubling” (illustrated

below in 1D, equivalently, S2 theory), or any other technique.

One class of 1D RT models is fully tractable, and therefore extensively used in

atmospheric radiation science: uniform slabs in the diffusion/P1 approximation derived

above and/or for two-stream/S2 models, i.e., when the angular quadrature is reduced

to two beams [62]. The S4 model was also worked out in closed form for Gaussian

quadrature points [63]. These simplified angular representations are expected to become

more accurate as the cloudy medium becomes more opaque, i.e., optical thickness

τ = σH = H/ℓ (54)

increases with H for a given extinction σ, equivalently, the MFP ℓ decreases for

a given geometrical thickness H . Very few other cloud geometries are amenable

‖ In the atmospheric RT community, only spatial dimensions are counted upfront.
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to completely analytical treatment, one exception being uniform spheres within the

diffusion approximation (cf. §3.3 and references therein). Although far more relevant to

aerosols than clouds, the opposite asymptotic limit of transport theory, τ vanishingly

small, is amenable to the single-scattering approximation. This computation, including

flux estimation via angular integration, can be performed analytically for a number of

geometries including slabs [64] and spheres [65].

In the two-stream model, diffusion-type equations arise for the sum and difference

of the up- and down-welling fluxes and conversely, using the correspondence in (43).

Intuitively, this plane-parallel cloud geometry may be a reasonable approximation to

solar RT in the real world for single-layered unbroken stratiform clouds, and possibly

better still if spatial and/or angular integrals are targeted, as in radiation energy budget

modeling.

3.1.3. 1D “Adding/Doubling” and Diffusion Theory for ̟0 = 1. In the procedure

outlined above to derive boundary-leaving radiances and fluxes, one necessarily solves

the transport or diffusion equations for all the points in the medium. This may not be

optimal when one is only interested in the overall radiation budget, let alone remote

sensing applications, where only radiances and fluxes at the boundaries matter. The

adding/doubling method can be used to obtain directly R and T as functions of ̟0 in

[0, 1], g in [−1, +1], and τ ≥ 0. To illustrate this computational technique as well as the

essential transport physics of uniform slab clouds, we will invoke “literal” 1D RT, i.e.,

where the entire steady-state radiance field is reduced to {I+, I−} expressed in Watts,

with no steradians or even m2 to worry about. In one spatial dimension, the phase

function reduces to the discrete probabilities of scattering forward, pf = (1 + g)/2, or

backward, pb = 1 − pf = (1 − g)/2.

Suppose we know the reflectivity/albedo R = I−(0)/F0 and transmittance T =

I+(H)/F0 of a 1D “slab” (i.e., the interval [0, H ]), for given optical properties {σ, ̟0, g}.
If these local properties are all uniform between z = 0 and z = H , then only the non-

dimensional product in (54) matters; we can take either H or ℓ (hence σ) as unity

without loss of generality. Knowing {R, T}(τ), can we compute it for τ + δτ where

δτ ≪ 1? If we denote {r, t} = {R, T}(δτ), then it is not hard to show that

R + δR = r + Rt2/(1 − Rr) and (55)

T + δT = tT/(1 − Rr) (56)

where the 1/(1−Rr) factor accounts for any number of reflections between the two layers:

t× [
∑∞

n=0(Rr)n]× T in transmission, and without the last T but with R× t instead for

relfection. Since the additional layer is infinitesimally thin, we have {r, t} ≈ {0+, 1−},
hence {R + δR, T + δT} ≈ {r + Rt2(1 + Rr), tT (1 + Rr)}. More specifically, we have

r = ̟0(1 − g)δτ/2 and (57)

t = 1 − δτ + ̟0(1 + g)δτ/2 (58)

if we invoke the single-scattering approximation. By substitution, elimination, and

keeping only 1st-order terms, we end up with the following coupled nonlinear ODEs to
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solve:

R′ = − 2[1 − ̟0(1 + g)/2] R + [̟0(1 − g)/2] (1 + R2), (59)

T ′ = − [1 − ̟0(1 + g)/2] T + [̟0(1 − g)/2] RT, (60)

where derivatives are with respect to τ , with initial conditions {R, T}(0) = {0, 1}. The

former is a classic Ricatti ODE.

Starting with the simpler case of conservative scattering (̟0 = 1), one can easily

show that R′ + T ′ = 0; the solutions of (59)–(60) are then

R(τ) = (1 − g)τ/(2χ + (1 − g)τ) and (61)

T (τ) = 1 − R(τ) = 1/(1 + (1 − g)τ/2χ) (62)

by energy conservation, with χ = 1. Solution of the corresponding 1D diffusion model

(i.e., for slab geometry in three spatial dimensions) for an isotropic boundary source

leads to the same expressions but with χ determined by the precise boundary conditions,

recalling that χ ≈ 2/3. The product (1− g)τ in (61)–(62) is the “scaled” optical depth

of the cloud. We see from (27) that it is simply the distance ratio

τt = H/ℓt = σtH = (1 − g)τ (63)

in the present ̟0 = 1 case; it is clearly a key quantity in diffusive transport theory. We

note that the δ-rescaling transformation in (31) leaves τt invariant.

When expanding (62) for τ ≪ 1, we obtain T (τ) ≈ 1 − (1 − g)τ/2χ,

where we do not recognize the direct transmission that should dominate: Tdir(τ) =

exp(−τ) ≈ 1 − τ for normally incident collimated illumination; nor do we see Tiso(τ) =

2
∫ 1

0
exp(−τ/µ0)µ0dµ0 ≈ 1 − 2τ for the actual isotropic illumination. This reminds us

that, for spatial dimension ≥ 2, the diffusion model targets only the optically thick

regime. The accuracy of the diffusion transport model can however be improved for

solar radiation by using the internal anisotropic source terms in (46)–(47); see Ref. [62]

for details. This of course introduces a dependence on the cosine of the solar zenith

angle µ0, and opens up the possibility that the δ-rescaling transformation in (31) will

have a positive impact on the diffusion model’s performance (with the full multi-stream

transport model as a benchmark).

3.1.4. Three Elementary Applications. As a first application, we return to the question

of the intense whiteness of clouds viewed in reflection geometry. We established already

that clouds are very weakly absorbing in the visible spectrum and there scattering

properties are spectrally flat (cf. Fig. 4). Multiple scattering will always whiten clouds

since any dependence of τ on λ is significantly flattened after being passed through

the cloud albedo expression in (61), and more so as the asymptotic diffusion regime

(τt = τ(1 − g)τ ≫ 2χ) is approached. By the same token, the expression for diffuse

cloud transmittance in (61) also flattens the spectral slope but also lowers the light

levels, hence the uniformly gray appearance of the base of thick stratus clouds, or of the

non-illuminated side of cumulus-type clouds. So we would like to know: How optically

thick are clouds across the visible spectrum?
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Bohren et al. [66] established empirically that a human observer cannot distinguish

the direction of the Sun through a cloud of forward-scattering particles (g ≈ 0.85) when

τ & 8–10; this is of course when the diffuse light overwhelms not only the direct but also

the forward-scattered light. Based on (61), we are interested in comparing numerically

τ and 2χ/(1− g). When equal, we have R(τ) ≈ T (τ) ≈ 1/2; therefore, as τ approaches

and increases beyond 2χ/(1 − g), clouds become powerful diffusers of light. Values in

the literature for χ range from 1/
√

3 ≈ 0.577 to a transcendental number ≈ 0.7104, and

we recall that liquid water clouds have g ≈ 0.85 while their ice water counterparts are

closer to 0.75. So the range for 2χ/(1−g) is 7–9 for liquid clouds, and 5–6 for ice clouds.

Interestingly, this is at the low end of the climatology for low/warm clouds, which can

thus be deemed by-and-large diffusive, and at the high end for high/cold cirrus (Ci)

clouds, which indeed will rarely block the Sun completely (and frequently display rings,

sun-dogs, and other such single-scattering phenomena [67]).

Clouds matter for the radiation part of the energy cycle in the climate system,

largely because they are optically thick, and they also play a key role in the atmospheric

part of the hydrological cycle. So, as a second application, we ask: How much water is

there in a cloud?

This amount is given by its liquid/ice water path (LWP/IWP) in kg/m2 defined

as the vertical integral of mass density of water in the cloud droplets or cystals, a.k.a.

liquid/ice water content (LWC/IWC) in kg/m3:

CWC(z) = n(z) × ρw × 4π

3
r3(z) (64)

where condensed/cloud water content (CWC) = LWC + IWC and ρw is the density of

condensed water, ≈103 kg/m3, hence

CWP = LWP + IWP =

H
∫

0

CWC(z)dz. (65)

CWP, LWP, or IWP can also be measured as the thickness (say, in mm) of the layer of

all the water of interest in clouds aloft, were it all precipitated, which is the same as in

(65) above but without ρw in (64) and reducing all the length dimensions to, say, mm.

We now compare CWP and cloud optical depth

τ =

H
∫

0

σ(z)dz. (66)

where

σ(z) = n(z) × 2 × πr2(z) =
3

2

CWC(z)

ρwre
(67)

in the limit of large size parameters (Q ≈ 2 in Lorenz–Mie scattering theory). If the 2nd

and 3rd droplet-radius moments have the same vertical profile, i.e., re in (3) is invariant

with altitude, then

τ =
3

2

CWP

ρwre
. (68)
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Equivalently, τ is 1.5× the ratio of CWP and re when expressed in the same units.

As an example, we can take τ = 15, which yields the reasonable cloud albedo value of

R = 0.63 for the canonical g = 0.85 and χ = 2/3 in (61), and re = 10 µm (another

canonical value); we then find that CWP is only 0.1 mm. This illustrates how so little

water, if dispersed into many small particles in the atmosphere, can provide powerful

refectivity for the planet. Solving (68) for CWP makes clear why both τ and re are

highly desirable products in cloud remote sensing.

As a third and final application, we can now explain the above-mentioned indirect

effect of aerosols on climate via cloud albedo, a.k.a. the Twomey effect [15]. For clouds

forming in clean air, we can count on n ≈ 100 CCN/cm3; in polluted air, this number

can be 10× more. Consequently, r3 (hence re) will have to go down and, for a fixed CWP

in (65) and (68), τ will necessarily go up. In view of (61), this means more reflective

clouds. In the absence of further feedbacks, this will cool the climate. If, due to the

larger population of smaller droplets, precipitation is also delayed or even suppressed,

the longer life-cycle of clouds goes in the same direction. The tough question about

dynamical and microphysical feedbacks then becomes critically important, and is being

actively investigated.

3.1.5. 1D “Adding/Doubling” and Diffusion Theory for ̟0 < 1. The case of non-

vanishing absorption (̟0 < 1) is more involved. For the diffusion model, we find

R(τ) =
1 − X2

1 + X2 + 2X coth Y
and (69)

T (τ) =
2X cosh Y

1 + X2 + 2X coth Y
(70)

where

X = χ
√

d(1 − ̟0)/(1 − ̟0g) = χℓt/Ld and (71)

Y =
√

d(1 − ̟0)(1 − ̟0g) τ = H/Ld (72)

with d = 1, 2, 3 being the number of spatial dimensions. It is readily shown that indeed

all the factors of 3 in (21)–(26) and (44)–(45) ultimately come from the three spatial

dimensions considered therein. In particular, the d = 1 case in (69)–(72) solves exactly

the Riccati ODE system in (59)–(60) when χ = 1. The d = 3 case has naturally

attracted considerable attention in the atmospheric RT literature [62, 68, 69, among

many others].

A new length scale,

Ld = ℓt/

√

3(1 − ̟0)

1 − ̟0g
= 1/

√

3(1 − ̟0)(1 − ̟0g)σ (73)

in d = 3, appears in X and Y in combination with the extrapolation length and the slab

thickness respectively. It is commonly known as the “diffusion” length of the medium.

When Ld → ∞ (̟0 → 1), the expressions in (69)–(70) revert to (61)–(62) for any choice
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of d. The key (local) scale ratio here,

ℓt/Ld = X/χ =

√

3(1 − ̟0)

1 − ̟0g
, (74)

is known as the “similarity” factor. We note that the δ-rescaling transformation in (31)

leaves both X and Y , hence ℓt and Ld, invariant. So no performance improvement can

be expected here; again, that calls for diffuse/direct separation and better solar source

representation using anisotropic internal source terms.

We therefore expect absorption to matter when Ld . H (Y & 1), equivalently,
√

(1 − ̟0g)/3(1 − ̟0) . τt = σtH , which in diffusion theory should be & unity. In

this non-conservative case, the finite rate of radiant energy absorption in the slab is

A(τ) = 1− [R(τ)+T (τ)] in units of F0. Like R(τ), A(τ) raises from 0 to an asymptotic

value. For the isotropic source model leading to (69)–(70) in three spatial dimensions,

we have

A(∞) = 1 − R(∞) =
2X

1 + X
≈ 2χ

√

3(1 − ̟0)

1 − ̟0g
, (75)

where we recognize the ratio in (74). This is a strong function of (1 − ̟0) that

results physically from the effectiveness of absorption when the transport is dominated

by multiple scattering. To assess the power of multiple scattering as a catalyst of

absorption, we focus on clouds where A(∞) ≈ R(∞) ≈ 1/2. This occurs when

1 − ̟0 ≈ (1 − g)/48χ2, which is in the range 0.006–0.01 (depending on the choice

of χ): less than 1% of the collisions results in absorption. Furthermore, returning to

finitely thick clouds, the approach to this asymptotic regime is exponentially fast, going

as T (τ) ∝ exp[−τt

√

3(1 − ̟0)/(1 − ̟0g)]. This high sensitivity of cloud reflectivity to

(1−̟0) is excellent news for remote sensing determination of re. Recall from §2.2 that

σa = n ξa scales roughly as r3, hence (1−̟0) will go as re. Fortunately there are several

NIR wavelengths where condensed water has absorption bands. We can thus link clouds

not only to the energy cycle (with r2) but also to the water cycle (with r3).

Absorption by cloud particles has important consequences for the solar radiation

energy budget estimation as well as for satellite and ground-based remote sensing,

particularly of cloud droplet size since, as previously noted, 1 − ̟0 = σa/σ scales as

re. On a related note, the rapidly flat asymptotic behavior of R(τ) as τ → ∞ explains

why opaque aerosol plumes composed of smoke from wild fires or volcanic ash appear

to be grey, sometimes almost white, in spite of the tiny size of the particles. They may

be Rayleigh-type scatterers, but are also strongly absorbing; therefore, as in the case of

clouds, multiple scattering quickly flattens the spectral behavior as opacity increases.

Since diffusion naturally delivers boundary fluxes and absorption rates, it is ideally

suited for computation of the solar radiation budget. Beyond the version presented here

explicitly, one can include the important dependence on solar zenith angle (SZA) cosine

µ0, which by definition varies over the globe, if the more sophisticated (direct/diffuse

separated) version of the model is used. It is indeed used routinely in this task for
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Figure 5. Normalized zenith and nadir radiances vs. cloud optical depth. Calculations

from the 1D RT model DISORT [79] for SZA = 60◦. Surface is black and the C1 phase

function, as specified by Garcia and Siewert [80], was used.

GCM modeling, where it is known as the δ-Eddington model [62]. Unresolved spatial

variability however remains a challenge in this application, to be discussed further on.

For remote sensing applications, one needs to go a step further and access the

dependence on the viewing geometry. This geometry is captured by µ and φ − φ0, the

difference in azimuth between the (so-called “principal”) plane containing the normal

to the slab and the sun and the observer’s plane. In view of the sheer volume of remote

sensing data, we would like to do this without reverting to numerical solutions of the full

(multi-stream) 1D RT equation. That is precisely the goal of “asymptotic” RT theory.

For a comprehensive survey of this modeling framework and numerous applications, we

refer the interested reader to Kokhanovsky’s recent review article [70].

3.2. A New Application for 1D RT: Exploitation of the Solar Background in Lidar

One person’s noise is another person’s signal. In this section, we will show two examples

of how noise can be treated as a signal; the “new” signal can be then used for reaping

a new harvest of information on clouds. We target ground- and space-based lidars.

3.2.1. Ground-Based Micro-Pulse Lidar (MPL). MPL, developed in 1992 [71], is now

widely used to retrieve heights of cloud layers and vertical distributions of aerosols layers

[72]. Conventional lidar observation is predicated on 1D time-dependent RT in the

single-scattering limit in the special case of scattering through 180◦. A periodic series

of laser pulses are transmitted into the vertical direction and the collocated receiver

points in the same direction, with a FOV just big enough to contain, with tolerance,

the slightly diverging transmitted beam. The MPL’s time-dependent returned signal is

proportional to the amount of light backscattered by atmospheric molecules, aerosols
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Figure 6. Ground-based MPL observations at NASA–GSFC. (a) Time series of

vertical backscatter profiles. (b) Corresponding time series of cloud optical depths

retrieved from MPL and Cimel (cloud mode). (b’) Same as the last third of panel

(b), but co-plotted with the two possible optical depths that correspond to the same

zenith radiance. Adapted from Chiu et al. [78].
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Figure 7. GLAS observation of a thick marine stratocumulus deck over the southern

Pacific Ocean: The Nov. 1, 2003, transect goes from 35.13◦–43.29◦ S and 84.30◦–

85.80◦ W. (a) 0.532 µm backscattering image and the corresponding solar background

photon counts in units of photons/bin; (b) cloud optical depth retrieved from the

0.532 µm solar background at 0.2 s resolution (1.4 km). Adapted from Yang et al.

[81].

and clouds. Measured photon counts are converted into attenuated backscatter profiles.

In this process, noise sources need to be accounted for [73, 74]. A significant source of

noise present at all times is solar background light measured by the MPL detector in

addition to backscattered laser light.

When lidars point straight up, the solar background noise is the solar zenith

radiance, which can be used to retrieve cloud optical properties [75, 76]. However, the

solar background signal is given in units of photon counts and for retrieval purposes,

photon counts must be first converted to actual radiance. This can be done in

a laboratory or using collocated measurements of zenith radiance. For MPL solar

background calibration, we used a collocated multi-spectral photometer that tracks the

Sun if not hidden by clouds in a narrow field-of-view (FOV). This is precisely what a

standard Cimel instrument does for the AERONET (AErosol RObotic NETwork) [77];
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it also provides zenith radiance either as part of its routine observations in the principal

plane (defined by the Sun and the local vertical), or in its “cloud mode” [75].

After solar background calibration, we can translate measured zenith radiance to

cloud optical depth τ . In contrast to nadir radiance, zenith radiance is not a one-to-one

function of cloud optical depth (Fig. 5). Two cloud optical depths give the same zenith

radiance: one for thinner clouds, the other for thicker clouds. Thus, it is impossible

to unambiguously retrieve cloud optical depth from solar background signal of a one-

channel MPL. To remove this ambiguity, a rule is needed to distinguish thick from thin

clouds. Chiu et al. [78] proposed a reasonable criterion assuming that, if a lidar beam

is completely attenuated, the detected clouds have the larger optical depth.

Figure 6 illustrates two hours of observations of the MPL at NASA’s Goddard Space

Flight Center (GSFC), Greenbelt, MD, on Oct. 29, 2005. Calibrations of MPL solar

background signals were conducted against one year of principal plane observations

of the collocated AERONET Cimel. As we can see from the time series of vertical

backscatter profile of MPL (panel 6a), there was a broken cloud field. To separate

thin from thick clouds, it was assumed that clouds were thin if the returned signal was

not completely attenuated. Figure 6b shows the time series of retrieved cloud optical

depth. The retrieved values were validated against an AERONET Cimel operated in

“cloud mode” [75]. The mean cloud optical depths from MPL and Cimel are 41 and

44, respectively, and their correlation is around 0.86. Except for a few outliers, errors

of retrievals from MPL are around 10–15% compared to those retrieved from Cimel.

However, it is not always possible to separate thinner from thicker cloud. In Fig. 6c

we have plotted together the two possible optical depths; the solid line corresponds to

smaller optical depths and the dashed one to larger optical depths. For certain radiance

values, these two optical depths are substantially different and it is easy to remove any

ambiguity using a “returned” or “not-returned” signal. For instance, when lidar pulses

are completely attenuated (not-returned), the larger cloud optical depth is the obvious

choice (e.g., 16.8–17.1 UTC). Similarly, when lidar pulses are not completely attenuated,

the smaller optical depth is the clear solution (e.g., 17.25 UTC). The problem arises when

both of these optical depths result in completely attenuated lidar pulses. In these cases,

the margin of difference is too small to confidently determine which optical depth is the

correct solution (cf. circled data in Fig. 6c). As a result, τ values ranging approximately

from 3 to 15 are hard to resolve. Retrieval of these intermediate optical depths may

require further information, such as another lidar wavelength or additional sensors.

3.2.2. Space-Based Geoscience Laser Altimeter System (GLAS). As for the MPL, laser

pulses transmitted from GLAS on board of ICESat (Ice, Cloud and land Elevation

Satellite) and other space-borne lidars can only penetrate clouds to a depth of a few

MFPs. As a result, only optical depths of thinner clouds (less than ≈3 for GLAS) are

retrieved reliably from the reflected lidar signal. We illustrate here possible retrievals

of optical depth of thick clouds using solar background light by treating the GLAS

receiver as a solar radiometer. As in case with ground-based lidars, we first need to
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calibrate the reflected solar radiation received by the photon-counting detectors. The

solar background radiation is regarded as a noise to be subtracted in the retrieval process

of the lidar products.

Yang et al. [81] recently used three calibration methods which agreed well with each

other: (1) calibration with coincident airborne and GLAS observations; (2) calibration

with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS

observations of deep convective clouds; (3) first-principles calibration, using the optical

depths of thin water clouds over ocean readily retrieved by GLAS’s active remote

sensing. Cloud optical depth was also retrieved from the calibrated solar background

signal using a one-to-one relationship similar to the one shown in Fig. 5.

To illustrate how passive remote sensing with GLAS complements its original active

remote sensing, we use a thick marine Sc cloud observation. The Sc scene (Fig. 7a)

was recorded by GLAS on Nov. 1st, 2003. The cloud deck is optically thick and the

standard GLAS active remote sensing was unable to retrieve its optical depth. However,

this information can be obtained using solar background signal. Figure 7b shows the

retrieved cloud optical depth field. The signal physics are quite the same here as for

the MPL. The problem of ambiguity in τ does not arise here, but the reflected radiance

signal levels off for large τ and, moreover, the receiver can saturate. Although we do

not in this case have independent validation data, we are confident the same retrieval

accuracy can be achieved as for the MPL at least for moderately opaque clouds.

3.3. The Spherical Cloud: A Tractable Problem in 3D Radiation Transport

So far, we have only used 1D RT taken either literally (in d = 1 space) or in the

framework of slab geometry (in d = 3) when translational invariance prevails, i.e., the

cloud is horizontally, if not completely, uniform. At the very least, this crude cloud

model has afforded us some physical insights at the cost of realism. The resulting 1D

RT may even be justifiably applied to the analysis of real-world clouds as long as they

are in a single unbroken opaque layer, the essence of stratiform cloud decks. However, we

are compelled to address—hopefully by way of analytical computation—clouds that are

at the opposite end of the gamut in outer geometry: clouds that, like cumulus are finite

in all three dimensions. For this class, we propose to use a spheroid as an archetype.

Other finite shapes have been investigated using both transport and diffusion

theories: parallelepipeds–diffusion [82], parallelepipeds–transport [83, 84], truncated

cylinders with vertical axis of rotation with diffusion [85], and probably others.

However, in the diffusion framework, such shapes with sharp edges invariably lead

to nontrivial problems where different eigenfunction expansions must be matched.

Strangely overlooked in the literature, spheroids do not have this problem.

Davis [86] worked out the problem of diffusive radiation transport in optically thick

non-absorbing spherical clouds under solar illumination properly distributed over one

hemisphere. Although the incoming solar flux is correctly modulated by the cosine of

the angle between the local out-going normal and the given direction of the Sun, this
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spatially varying flux is converted at the boundary into an isotropic source. This is in

step with the boundary-source model used in a previous section for the plane-parallel

slab. Although not very realistic for less than asymptotically large optical depths (thus

reducing the relative extent of the radiative boundary layer), it does allow the model

to be solved in closed form. In the following, we outline the problem and compare its

solution in the diffusion approximation to the golden standard of Monte Carlo (MC)

implementation of the corresponding linear transport problem.

For a general optical medium defined by an open and convex set M ⊂ R
3, with

the closed boundary set ∂M, the slab-based BC in (37) expressing illumination by a

collimated beam becomes

I(x,Ω) =

{

F0δ(Ω −Ω0), x ∈ ∂MR

0, x ∈ ∂MT

, (76)

for all x ∈ ∂M, which has been partitioned as follows:
{

∂MR = {x ∈ ∂M;Ω0 · n(x) ≤ 0}
∂MT = {x ∈ ∂M;Ω0 · n(x) < 0} , (77)

where n(x) is the out-going normal to ∂M at x. For an isotropic boundary source

distributed over ∂MR with the same overall solar flux intercepted by M, the r.h. side of

the top line in (76) becomes F0|Ω0 · n(x)|/π.

For convex media, ∂MF (F = R, T ) are two simply-connected sets. The choice

of subscripts adopted here hints at the fact that radiation escaping M through ∂MF

contributes to reflection if F = R and transmission if F = T . Note that this partition

between reflection and transmission is based on where the radiation escapes, rather than

in what direction it is heading. This distinction does not arise in slab geometry. In the

present finite 3D geometry, this choice of definition has the advantage of separating

topologically the cloud boundary into its “sunny” and “shady” sides. In the case of a

spherical cloud, Msp(rc) = {x ∈ R
3; ‖x‖ < rc}, with Ω0 = +ẑ, we have

{

∂MspR(rc) = {x ∈ R
3; ‖x‖ = rc, z ≤ 0},

∂MspT (rc) = {x ∈ R
3; ‖x‖ = rc, z > 0}. .

The natural choice of coordinate system here is:¶
x = (r cos ϑ, r sin ϑ cos ϕ, r sin ϑ sin ϕ)T.

For the simple diffusion model in a uniform sphere, with no volume sources nor sinks

(hence conservative scattering), the transport equation is simply −∇2J = 0 where

∇ = (∂r, r∂ϑ, 0)T in this axi-symmetric situation. The applicable Robin BCs for J(r, ϑ)

on ∂M(rc) = {x ∈ R
3; ‖x‖ = rc} are

Fin(ϑ) = (1 + χℓt∂r)J |r=rc
=

{

4F0| cosϑ|, π/2 ≤ ϑ ≤ π,

0, 0 ≤ ϑ < π/2
.

¶ Note the curly fonts used here to distinguish spatial from directional spherical coordinates.
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Figure 8. Overall reflection/transmission ratio for conservatively scattering spherical

clouds of varying optical thickness. MC simulation results for the ratio R/T divided

by the scaled optical diameter of the sphere, τt = 2(1 − g)σrc, are plotted versus

τt. The analytical diffusion model described in the main text predicts a constant

value of 1/2χ. The possible range for this number is indicated (horizontal dashed

lines) and it is validated by the MC-based computational linear transport, the usual

standard of accuracy, for large τt, as expected. Both collimated and diffuse (but

latitude-dependent) illumination was used and both isotropic (empty symbols) and

H–G (g = 0.85, full symbols) phase functions were considered. The locii of clouds

with R = T (1÷1) and R = 2T (2÷1) are indicated by the (solid) diagonal lines,

and the former gives the small-τt limit for the diffuse illumination scenario. For the

small τt with collimated illumination, a constant ratio is expected; for more detail, see

Dickinson’s recent study in single scattering [65].

The original article [86] gives the derivation of the 0th and 1st coefficients of J(r, ϑ) in

the natural expansion in (spatial) spherical harmonics. Those are the only ones that

matter for the spatially integrated outgoing boundary fluxes

Fout(ϑ) = (1 − χℓt∂r)J |r=rc
= J(rc, ϑ)/2,

if integrated over the sunny and shady hemispheres. Indeed, we are interested here in

the transmission

T =
1

πr2
cF0

π/2
∫

0

Fout(ϑ)dS(ϑ) (78)
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where dS(ϑ) = 2πr2
c sin(ϑ)dϑ and, by conservation, cloud albedo R = 1 − T . This

integral is easily done with spherical harmonics and leads to the simple result that

R

T
=

rc

χℓt
=

(2rc)/ℓt

2χ
(79)

where the numerator can be interpreted as the scaled (transport) optical diameter of

the sphere. Since we have R + T = 1 in this pure scattering case, we can solve for R

and T as needed.

Figure 8 shows validation data for the above diffusion model obtained by

implementing a MC solution of the corresponding problem in linear transport theory.

More specifically, we solved the steady-state version of (8) in M(rc) with ̟0 = 1 and the

H–G phase function in (33) for g = 0 and 0.85 using BCs in (76) for a collimated solar

beam as well as the isotropic boundary source with the same flux (i.e., modulated by

the local cosine of the SZA). We see that the two types of illumination converge to the

same answer for spheres of large optical thickness. The diffusion-theoretical prediction

for the ordinate, (R/T ) / (2rc/ℓt), is 1/2χ. This gives 3/4 for χ = 2/3 but, due to our

stated flexibility about χ, can fall in the range 0.70–0.86. The MC data supports this

prediction, particularly toward the low end (high χ).

The result in (79) is quite remarkable because, going back to (61)–(62) for the

non-absorbing slab model, we find

R

T
=

(1 − g)τ

2χ
=

H/ℓt

2χ
, (80)

which has exactly the same interpretation (since H is the “diameter” of the slab).

This leads us to some minor speculation. Let us broaden the scope to non-absorbing

ellipsoidal clouds Mel(a, b, c) = {x ∈ R
3; (x/a)2 + (y/b)2 + (z/c)2 = 1} illuminated

along the positive z-axis, but restrict ourselves to oblate cases, i.e., vertical aspect ratio

min{a, b}/c ≥ 1. We already know that the cases a = b = c = rc and c = H/2 with

a = b = ∞ lead to the same expression for R/T , namely, c/χℓt. Could it be the same

answer for arbitrary a and b? (This is most easily verified in the case of infinite horizontal

cylinders, where b = ∞ and a = c = rc.) In other words, for isolated horizontally (as

well as vertically) finite clouds, R/T depends linearly on the optical thickness of M but

does not seem to depend on its aspect ratio. If so, we can exploit this result for a new

(inherently 3D) concept in cloud remote sensing, as described further on (cf. Sect. 8.2.1).

4. Spatial and Temporal Green Functions

4.1. The Diffusion PDE-Based Approach to Space-Time Green Functions

We are primarily interested in the relatively small subset of Green functions for boundary

sources and boundary observers. We therefore take the unidirectional boundary source

function I(t, ρ, 0,Ω), µ > 0, for the RT problem to be as in (37) but with F0 = 1

and concentrated in space and time by factoring in δ(t)δ(~ρ). For a normally incident
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pulsed laser beam, we furthermore take Ω0 = ẑ (hence µ0 = 1). For a unitary isotropic

point-source, also of interest here, the δ(Ω −Ω0) factor is replaced by 1/π.

When the space-time Green function of a uniform slab cloud is targeted, the

simplest possible diffusion model—that based on an isotropic boundary source—is

obtained by replacing 4F0 on the r.h. side of (51) with 4δ(t)δ(~ρ). We note that, even

when the cloud is homogeneous, the Green function problem is inherently 3D because

the source is concentrated at a single point.

We now take 2D Fourier-in-~ρ-space and Laplace-in-time transforms of the key

diffusion-theoretical quantity J(t, x), yielding

J̃(s,~k; z) =

∫ ∞

0

dt

∫∫

R2

exp(−st + i~k · ~ρ) J(t, ~ρ, z) d~ρ(x, y) (81)

and similarly for F̃(s,~k; z) from F(t, x). Note that we now consider the Laplace and

Fourier conjugates of time and position in the horizontal plane (s and ~k respectively) as

parameters rather than independent variables, hence the position of the “;” separator.

The classic diffusion PDE in (29), where there are no absorption losses, then

morphs into a Helmoltz-type ODE in the remaining spatial variable, z. Equivalently,

combination of Fourier–Laplace transformed versions of (16) and (24) yields

−d2J̃

dz2
+ 3σt[σa + σ(e)

a ]J̃ = 0. (82)

This ODE is subject to boundary conditions
(

1 − χ

σt

d

dz

)

J̃

∣

∣

∣

∣

z=0

= 4,

(

1 +
χ

σt

d

dz

)

J̃

∣

∣

∣

∣

z=H

= 0, (83)

from (44)–(45), after incorporating (24) with qF (t, x) ≡ 0. We have defined here

σ(e)
a (s, k) = k2/3σt + s/c (84)

as an effective absorption coefficient that combines, as needed, with the true absorption

coefficient in (82). Variation in time as well as horizontal fluxes indeed act like an

absorption process in the transport of radiation along the vertical axis. So much so that

the expressions in (69)–(70), respectively for reflectivity and transitivity can be used

here for R̃(s, k) and T̃ (s, k). We thus rewrite (1 − ̟0) as σa + σ
(e)
a (s, k)/σ, and retain

σt as (1− g)σ +σa, with no impact from the pseudo-absorption; in particular, if σa = 0,

we take ̟0 as unity whenever it multiplies g.

Can the resulting expressions for R̃(s, k) and T̃ (s, k) be inverse Fourier-Laplace

transformed explicitly? We have not succeeded ... unless, following Zege et al. [60], we

enlarge the domain and modify the Robin BCs in (83) to look like Dirichlet BCs:

J̃(−χ/σt) = 4, J̃(H + χ/σt) = 0, (85)

which gives real meaning to the expression “extrapolation length” for χ/σt.

This approximate radiation diffusion theory leads to boundary-flux Green function

expressions that can be Taylor-expanded into series of exponential functions with

constant coefficients. An immediate benefit is that these can be Fourier-Laplace inverse-

transformed term-by-term. The resulting space-time expression as infinite sums are
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however slow to converge at large (ct, ρ). Fortunately, this situation can be reversed by

using the Poisson sum-rule [87, 50, and references therein].

In the end, the space-time Green function is a spatial Gaussian at any fixed time,

and time dependence is a sum of exponential terms. Having explicit formulas for the

Green functions enables the determination of far-field behavior for the marginal (space

or time) Green functions, which turns out to be exponential on both accounts. The

spatial Green function is thus ∼ exp(−ρ/ρ⋆) as ρ → ∞ and the characteristic horizontal

transport distance is

ρ⋆ = H/πR(τt), (86)

where τt = (1 − g)τ and R(τt) is the two-stream estimate of cloud albedo in (61). The

time-domain Green function is ∼ exp(−ct/ct⋆) as ct → ∞, where the e-folding path

length is

ct⋆ =
3

π2
× H × τt

R(τt)2
. (87)

Coming from a model with strict similarity, i.e., where solutions depend only on the

combination of cloud properties in (1−g)τ , we can verify that (ρ⋆)2/ct⋆ = H/3τt = D/c

from (26).

Returning to the more accurate Robin BCs in (83), the lack of closed-form inverse

transforms is however not an impediment, quite the contrary, if the goal is to obtain

expressions for the spatial or temporal moments of the Green function. The formal

definition of the spatial moment of prime interest is

〈ρ2〉F =
1

F

∫ ∞

0

dt

∫∫

R2

ρ2F (t, ~ρ)d~ρ(x, y), (88)

for F = R, T where

F =

∫ ∞

0

dt

∫∫

R2

F (t, ~ρ)d~ρ(x, y). (89)

Temporal moments are defined similarly as

〈tq〉F =
1

F

∫ ∞

0

tqdt

∫∫

R2

F (t, ~ρ)d~ρ(x, y) (90)

with q = 1, 2, or more, again for F = R, T .+

Characteristic function theory from probability (see, e.g., Feller’s treatise [88]) tells

us how to obtain spatial or temporal moments from the successive derivatives of R̃(s, k)

or T̃ (s, k) with respect to s or k at the origin:

〈ρ2〉F =
−2

F

∂2F̃

∂k2

∣

∣

∣

∣

∣

s=0,k=0

(91)

for the horizontal transport away from the point source, and

〈tq〉F =
1

F

(

− ∂

∂s

)q

F̃

∣

∣

∣

∣

s=0,k=0

(92)

+ Angular brackets will always denote averages over space and/or time in cloud radiative responses.
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Figure 9. Cloud responses to a pulsed isotropic point-source in reflection. Diffusion

predictions from (95)–(94), with correction terms, and (61) are in solid lines; MC

validation data are plotted with symbols. The best overall fit was obtained for

χ = 1/
√

3 = 0.577 · · ·. Adapted from Ref. [89].

for time. These last quantities describe how the incoming pulse is stretched out in

the responses of the scattering medium, in particular, as variance of the transit time,

〈t2〉F − 〈t〉2F , varies with cloud parameters.

We can apply the above recipes for estimating spatial and temporal moments to

the fluxes obtained in the diffusion limit, namely, (69)–(70). In the absence of true

absorption, we only need to use

L
(e)
d (s, k) = 1/

√

3σtσ
(e)
a (s, k) (93)

when it appears in X and Y in ratio with the extrapolation length ℓt and the slab

thickness H respectively in the ancillary definitions (71)–(72).

Following Davis et al. [89], we start with (69). This basic diffusion model

predicts the following dependencies of reflected Green function moments on properties

of conservatively-scattering clouds:

〈ρ2〉R =
8χ

3

1

τt
× H2 ×

[

1 + C
(2)
R,ρ(τt/2χ)

]

, (94)

〈ct〉R = 2χ × H ×
[

1 + C
(1)
R,ct(τt/2χ)

]

, (95)

〈(ct)2〉R =
4χ

5
τt × H2 ×

[

1 + C
(2)
R,ct(τt/2χ)

]

, (96)

where we have highlighted the asymptotic (large τt) trends. The pre-asymptotic
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Figure 10. Cloud responses to a pulsed isotropic point-source in transmission.

Diffusion predictions from (98)–(100), with correction terms, for moments and (62)

for T are in solid lines; MC validation data are plotted with symbols (two values of χ

used to reproduce the MC benchmarks). Adapted from Ref. [90].

correction terms are given by

C
(2)
R,ρ(Z) = C

(1)
R,ct(Z) =

Z + 3/2

2Z(Z + 1)
,

C
(2)
R,ct(Z) =

8Z3 + 41Z2/2 + 75Z/4 + 1/8

2Z2(Z + 1)2
.

where, as in (79), we define

Z = R/T = τt/2χ. (97)

Time is recast here as the effective path length ct that the light has accumulated by

random scattering in the medium, from emission to escape.

Similarly, following Davis and Marshak [90], we apply (91) and (92) to (70) with



3D Transport of Solar Radiation in Clouds 44

all ancillary definitions, and find

〈ρ2〉T =
2

3
× H2 ×

[

1 + C
(2)
T,ρ(τt/2χ)

]

, (98)

〈ct〉T =
1

2
τt × H ×

[

1 + C
(1)
T,ct(τt/2χ)

]

, (99)

〈(ct)2〉T =
7

20
τ 2
t × H2 ×

[

1 + C
(2)
T,ct(τt/2χ)

]

, (100)

where

C
(2)
T,ρ(Z) = C

(1)
T,ct(Z) =

4Z + 3

2Z(Z + 1)
,

C
(2)
T,ct(Z) =

56Z3 + (166Z2 + 15(10Z + 3))

14Z2(Z + 1)2
.

A striking difference between the above expressions for T -moments and their

counterparts for R-moments in (94)–(96) is that the extrapolation length parameter

χ has disappeared from the dominant terms. Recall that χ is a weak link in diffusion

theory used to best capture radiative boundary-layer effects in the diffusion solution,

by theoretical or numerical comparison with the full RT solution. There are obviously

radiative boundary layers on both sides of the cloud where the transport regime goes

from diffusing to streaming. However, the near-source/reflective side of an optically

thick cloud is dominated by radiation that has suffered only a few scatterings (as little

as a single one). So it is not surprising to see the signature boundary layer control

parameter χ play an important role in reflected light characteristics, but not in those of

transmitted light.

Figures 9 and 10 illustrate the spatial and temporal moments of the reflected and

transmitted Green functions respectively, for the simple isotropic boundary point-source

diffusion problem. Explicit expressions are in (94)–(96) for R-moments and (98)–(100)

for T -moments; we also plot the normalized flux T = 1 − R from (62). All the

moments are normalized by cloud thickness H taken to the appropriate power; then

the square-root of the second-order moments are computed, thus producing root-mean-

square (RMS) statistics. These non-dimensionalized quantities are plotted against scaled

optical depth (1− g)τ , which is characteristic of diffusion theory. Spatial and temporal

moments estimated in the course of MC simulations of the corresponding RT problems,

assuming both isotropic and g = 0.85 Henyey–Greenstein (33) phase functions, are also

plotted. The MC runs provide validation data for the diffusion model since they result

from a higher-level model.

The isotropic boundary point-source model is not very realistic for representing

either localized laser beams (typically at normal incidence) or the uniform solar beam

(typically at some oblique incidence). Nor is the assumption of a homogeneous

cloud in view of the well-known tendency of stratiform clouds to develop a robust

internal gradients in LWC, hence in extinction σ from (67). Moreover, this cloud-scale

stratification is overlaid in most clouds with significant random 3D fluctuations due to

their inherent turbulence.
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All of these limitations of the above transport model can be removed without

leaving the framework of diffusion theory, and still leading to closed-form expressions

at least for the spatial and temporal moments. We highlight one particularly simple

approach for the small-scale random fluctuations in §5.1.1. For further improvements,

the interested reader is referred to the recent paper by Davis [91] for reflected light. The

same enhancements are extended from reflected light to transmitted light by Davis et

al. [92]. The expressions therein are useful, but not simple.

4.2. New Opportunities in Cloud Remote Sensing

Apart from the high accuracy of the the diffusion-based predictions for τt = (1−g)τ & 1,

the remarkable fact about Figs. 9 and 10 is that, in both cases, different space and

time moments scale differently. This is very good news for cloud remote sensing using

somehow observed Green functions, as discussed further on; indeed, given observed

values for any two moments, one can estimate the two cloud properties H and τ ,

recalling that g hardly varies in nature (at least for liquid clouds [47]). The above-

mentioned modeling refinements for laser-beam source representation as well as internal

stratification and random fluctuations of extinction do not change these qualitative

statements based on the asymptotic behavior of (94)–(100) visible in the associated

Figs. 9–10.

There are many other ways of obtaining cloud optical depth τ that are already

operational. For instance, in §3.2 the level of solar background noise in lidar systems was

exploited, just by treating the receiver as a basic narrow-FOV radiometer. In essence,

this technique consists in solving (61) for τ given R or (62) given T . We therefore

include in the list of possible “observables” the spatially and temporally integrated

fluxes in (89), which are also plotted in the figures. In contrast, there are very few

existing ways of obtaining physical cloud thickness H . The best is probably to use mm-

wave cloud radar (MMCR), which is now available from many ground-based stations

world-wide as well as from space (presently, only NASA’s CloudSat mission, but more

will come). This is the advanced active single-scattering technology for clouds that are

too opaque in the visible/near-IR (VNIR) for thin-cloud/aerosol penetrating lidar (as

well as in the TIR window); moreover, the back-scattering follows Rayleigh’s law since

droplets are ≪ λ, a few mm. As powerful as MMCR has proven, it doesn’t always

work as originally planned [93]. Even when it does, it is not straightforward to translate

MMCR information, basically the droplet density ×r6 from (2), into VNIR-TIR cloud

information that matters for the climate.

We note that, for all the observational possibilities in (88)–(90), there are very

different calibration requirements. Indeed, the normalization of F by F0 in, e.g.,

(53)–(53), reminds us that these responses for steady and uniform illumination can be

measured only if the radiometers have absolute calibration, which is notoriously difficult

to establish and maintain. In contrast, the ratios in the moments per se (88) and (90)

make their observation immune to unknown multiplicative constants in the fluxes, i.e.,
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absolute calibration error.

An interesting difference between the plots for reflected light (Fig. 9) and its

counterpart for transmitted light (Fig. 10), is that the mean and RMS values for path

ct are closely related in T but diverge in R as (1 − g)τ increases without bound. This

is much better news for the observation of clouds in reflection than in transmission. It

indeed turns out that
√

〈t2〉F /〈t〉F is almost constant when F = T , but when F = R

it increases with τ . So, with access only to time-domain observations of reflected light,

one can in principle infer both τ and H without any need for calibration.

A straightforward instrumental implementation of space-time RT Green function

observation, potentially leading to Green function moment estimation, uses pulsed lasers

[94, 95]. In this case, the receiver is very near the transmitter, at any rate, on the same

side of the cloud; so the relevant moments are the 〈· · ·〉R’s. Whether or not these

moments are estimated explicitly with the field data, their cloud information content

analysis proves correct.

Reliance on the expensive technology of pulsed lasers is not strictly necessary to

access time-domain observables such as 〈tq〉F . We will show in §8 how in fact both

spatial and temporal information can be determined even using a steady and uniform

source such as the Sun. In this case, reflected quantities are obtained from airborne and

space-based sensors, and transmitted ones from ground-based sensors.

4.3. The Random Walk Scaling Approach to Space-Time Green Functions

We have so far used a PDE-based theory of radiation diffusion to compute multiple-

scattering Green functions, and we have systematically used MC simulation to validate

numerically that RT approximation leading to conveniently closed-form results. It is

informative to go to the other extreme of this hierarchy in Green function models and

perform a highly simplified version of MC simulation analytically, namely, estimate

statistical properties of random (a.k.a. drunkard’s) walks. This approach reveals the

physical essence of the problem of transport in dense clouds. In particular, one can

derive the scaling exponents of τt = (1 − g)τ in all the dominant terms of the Green

function moments, cf. (94)–(96) and Fig. 9 for reflected light, (98)–(100) and Fig. 10 for

transmitted light. The same exponents appear in all other spatial or temporal moment

estimations based on more sophisticated representations of the cloudy medium or the

source term [91, 92]; in other words, the refinements affect only scaling prefactors and

pre-asymptotic corrections.

We note first that the key cloud parameter in diffusion theory, τt, is the ratio of the

only two scales that matter in random walks:

• H , the outer scale (size of the domain bounding the stochastic process);

• ℓt, the inner scale (MFP for effectively isotropic scattering).

The latter defines diffusivity, namely, D = cℓt/d in d spatial dimensions.
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4.3.1. Caveat about Photons as “Particles” of Light. The term “photon” was coined

by Gilbert Lewis in 1926 to describe the quantum of the electromagnetic field, of which

light is a prime example. Even if second quantification assigns energy hν, momentum

h/λ, and spin ±h to photons, it is fundamentally incorrect to think of them as either

classic or quantic particles traveling through space-time at velocity c. For instance,

by any definition, it is not the same photon (EM field excitation) that is incident and

re-emitted by a scattering entity. Photons can populate energy levels in, e.g., thermal

sources and laser cavities; they can also be detected using materials such as silicon

endowed with photo-electronic responsivity. In between, it is light—not photons—that

propagates in optical media according to the laws of RT theory, which is a non-trivial

construct from statistical optics [41]. The radiance field predicted by the RT equation,

and associated boundary conditions, is only a probability of detecting a photon (per

photon emitted at the source) with a roaming virtual instrument.

In MC computation, it is very tempting to talk about the “photons” launched in a

simulation. This should be avoided, proper terminology is “histories” or “trajectories”

or “realizations” or even “Monte Carlo particles.” Recall that MC is only a random

quadrature approach for estimating functionals, integrals over high-dimensional radiance

fields. The random walk theory presented here is basically a poor person’s MC, with

only some basic results from probability theory to work with. So, although strongly

reminiscent of wandering particles, we are dealing with light intensities, to be interpreted

strictly as probability densities for detection events. Only at that point can one talk

about photons and, more correctly, photo-electrons.

4.3.2. Elements of Brownian Motion Theory. In boundary-free homogeneous 3D space,

an isotropic source at r = 0 emits a diffusing “wavefront” of particles propagating at a

decreasing “velocity” such that the mean distance from the origin, ≈
√

〈r2〉, grows only

as
√

Dt. This is a classic reading of the famous law of diffusion

〈r2〉 = 6Dt, (101)

in unbounded 3D space, which results directly from the well-known Green function for

diffusion in three spatial dimensions: n(t, r) = e−r2/4Dt/(4πDt)3/2, itself the solution of

∂tn = ∇2n for t > 0 when n(0, r) = δ(r).

In the statistical physics of Brownian motion, a lesser known but extremely useful

result is the “law of first returns” [96]. Focusing, for simplicity on one-dimensional

random walks (where D = cℓt) along the z-axis, we seek the PDF of t > 0, the random

epoch at which the coordinate of Brownian particle (that left z = 0 at t = 0) first

changes sign. It can be shown [97, 88], that

Pr{t, dt} =
c√
πℓt

(

ℓt

ct

)3/2

e−ℓt/2ctdt ∼ dt

t3/2
, (102)

if we acknowledge, then ignore, the exponential cutoff at early times. This is an

interesting PDF associated with the gambler’s ruin problem: How long does it take

a person who comes to the roulette table with $1, and always bets “red,” $1 at a
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time, to walk away with nothing? There is actually no mean for this duration—it is

divergent—and that may go a long way in explaining why gambling is addictive, and also

why casinos never close. Indeed, before loosing everything in time with probability one

(even the initial $1) to this casino with an infinite bank, gains can be considerable—and

last a correspondingly long time—for a significant number of players.

The corresponding RT problem is that of reflection from a semi-infinite (H → ∞)

non-absorbing medium, where 〈ct〉R is indeed infinite; this follows from (95) since the

ratio 〈ct〉R/H becomes insensitive to scaled optical thickness τt. Alternatively, one can

consider the ratio 〈ct〉R/ℓt that will increase as τt = H/ℓt when the transport MFP ℓt is

held constant. Higher-order moments follow suit at even faster rates. Fractional-order

moments of order q < 1/2 are, however, finite.

4.3.3. Transmitted Light. Now r2 = x2+y2+z2 and, by symmetry, all three components

are equal in magnitude on average, at least in unbounded diffusion. Therefore, since

z = H whenever a transmission event occurs, ρ2 = x2 + y2 ≈ (2/3)H2. This concurs

with the expression in (98) for 〈ρ2〉T : it is asymptotically invariant with respect to τt.

Therefore, when the bulk of the diffusing wavefront reaches the opposite boundary,

i.e., at time t ≈ (2/3)H2/6D = H2/3cℓt ∼ (H/c) × τt based on (101), we will be

detecting the transmitted Green function at full strength. In other words, reinterpreting

the fixed epoch t in (101) as a random variable, we can anticipate that 〈ct〉T /H ∼ τt.

This confirms the expectation in (99) based on “exact” (PDE-based) diffusion theory,

as illustrated in Fig. 10.

There is no simple argument for the scaling of the 2nd-order moment in time, also

plotted in Fig. 10. The fact that it goes as 〈ct〉2T tells us that the distribution of arrival

times at the boundary opposite the source of diffusing particles is relatively narrow.

It is interesting that we can estimate at least the scaling of Green function moments

in transmission without knowledge the overall probability of transmission T . This is

computational equivalent of the above-stated instrumental fact that we don’t need

calibrated radiometry to derive moment-based observables of cloud Green functions.

To derive the scaling of T with τt calls for the law of first returns in (102). Real

clouds have finite physical and optical thicknesses, and real casinos have finite banks.

We can approximate the probability of transmission—the “always red” gambler breaks

the casino’s bank—by truncating the PDF in (102) at the characteristic transit time

〈t〉T ∼ H2/cℓt it takes for light from the pulse to be transmitted. This leads to

T ≈ Pr{t > 〈t〉T} =

∞
∫

〈t〉T

Pr{t, dt} ∼ ℓt/H, (103)

i.e., the asymptotic behavior T (τt) ∼ 1/τt in (62), clearly visible in the corresponding

curve in Fig. 10.

4.3.4. Reflected Light. Temporal/path moments for reflected light can also be

estimated for a finite diffusion domain, namely, 0 < z < H, by defining a truncated
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(and, in principle, renormalized) version of the PDF in (102) for the first-return process.

Allowing time for the particle to return to z = 0 from wandering deep into the medium

(i.e., almost being transmitted at z = H), we compute specifically

Iq =

2〈t〉T
∫

0

tq Pr{t, dt}, hence 〈tq〉R ≈ Iq

I0

∼
(

ℓt

c

)1/2(
H

cℓt

)q−1/2

, (104)

where we have neglected the difference between I0 and unity, namely, T in (103).

Recalling once more that H/ℓt = τt, this leads to 〈(ct)q〉1/q
R ∼ H × (τt)

1−1/q, as was

found in the limit τt → ∞ in (95)–(96).

As previously noticed, it is remarkable that the moments 〈(ct)q〉R all scale differently

with τt whereas we fully expect that 〈(ct)q〉T ∼ 〈ct〉qT , for q ≥ 2. From the vantage of this

random-walk approach to diffusion theory, we can trace this property to the mixture,

made clear in (104), of short and long paths ct. In RT language, this translates to

reflected light being a balanced mixture of light scattered both few and many times.

As we did for the spatial Green function in transmission, we can roughly estimate

the RMS value of ρ for reflection from (101), with D ∼ cℓt and (104) for q = 1. We

obtain 〈ρ2〉R ∼ D〈ct〉R ∼ Hℓt. In other words, the RMS ρ for reflected light goes as

the harmonic mean of ℓt and H , the inner and outer scales of the diffusion problem at

hand, which is just another reading of the dominant term in (94).

5. Realistic (3D) Versus Operational (1D) Cloud RT

The atmospheric radiation communities engaged in both cloud remote sensing and

energy cycling by clouds are, to this day, heavily invested in the plane-parallel

slab representation of clouds, at least in operational settings where efficiency and/or

simplicity are desirable in order to expedite frequent routine computations. This is

irrespective of the pixel scale, which range from ∼10s of m to ∼10s of km, or of the

grid scale of the dynamical model, which also from ∼10s of m in Large-Eddy Simulation

(LES) models to ∼100s of km in GCMs). So, in spite of decades of research into 3D RT

effects, 1D RT models are still a relevant point or comparison.

Scale-by-scale variability analysis is key to 3D RT because it can be used to

determine what processes need to be considered. So is the question of resolved versus

unresolved spatial variability, be it in observations or in computations. Indeed the latter

scale, as artificial is it is, determines what kind of 3D RT solution should be explored. In

the following, we examine both situations and, for each one, discuss illustrative methods

that address the fundamental issues at hand.

5.1. Dealing with Unresolved Random Fluctuations

If there are significant spatial fluctuations of optical properties at scales that are sub-

pixel or sub-gridscale, then it important to assess their effect on the RT. This assessment

is by necessity probabilistic since, by definition, detailed structure is not a given; a
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(usually small) number of statistical properties are of course given. Accordingly, only

domain-average radiative properties are requested of the RT model.

There are three broad classes of solution to this problem. On the one hand, one

can try to find out how to modify the given (typically, mean) optical properties in such

a way that the new values can be used in a standard 1D RT model and yet deliver

the right answer for the domain-average properties of interest. This is the “effective

medium” or “homogenization” approach. On the other hand, one can maybe derive

a mean-field theory for the RT at the scale of the domain and this may lead to new

transport equations calling, in general, for new solution techniques. Between these two

extreme situations, there is the so-called Independent Pixel/Column Approximation

where multiple 1D RT computations are performed and their outcome is averaged over

the variability of the input parameters; typically, cloud optical depth is varied.

We now illustrate each of these three scenarios and also refer the interested reader

to a more extensive survey by Barker and Davis [98].

5.1.1. Homogenization via Cairns Rescaling. Computationally speaking, the best way

of accounting for 3D RT is to reduce it to a single 1D RT problem. That is the lofty

goal of effective medium theory. As an example of this ideal approach to the capture of

unresolved spatial variability effects in a standard (typically, 1D) RT model, we describe

the solution elaborated by Cairns et al. [99].

Cairns’ renormalization theory then leads to

σ′ = (1 − ǫ)σ,

1 − ̟′
0 =

[

1 − ̟0

(

ǫ

1 − ǫ

)]

(1 − ̟0), (105)

1 − ̟′
0g

′ =

[

1 − ̟0

(

ǫ

1 − ǫ

)]

(1 − ̟0g).

The new parameter for the unresolved variability is ǫ and σ is the average extinction

over the (presumably large) region of interest. We see that 1/(1 + ̟0) ≤ 1/2 is a

strict upper limit for ǫ, and that it is probably best to not approach it too closely in

practice, especially not in diffusion modeling. The δ-rescaling in (31), which improves

the scattering phase function model in diffusion theory, leaves the product (1 − ̟0g)σ

invariant; here it decreases both through σ and through 1 − ̟0g as ǫ increases

(since g′ > g). For diffusion models with strict similarity (i.e., dependent only on

σt = (1 − ̟0g)σ), we have

σ′
t ≈ (1 − 2ǫ)σt (106)

when scattering is conservative or almost (̟0 ≈ 1). So the prediction is that the small-

scale random internal variability of clouds that Cairns and coauthors renormalized away

have the net effect of reducing the (transport) extinction, hence the associated optical

depth. This will in turn increase cloud transmittance and decrease reflectance. We will

see that enhanced transmission and reduced reflection by clouds are robust predictions
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Figure 11. Cairns’ scaling factor ǫ used in (106). Parameter ǫ is plotted as function

of σ2
1/2

/σ and σlc using (107)–(108). Values up to ∼1/3 can be used with some

confidence (this divides 1 − g at most by 2). Therefore at most moderate 1-point

variability ratio (RMS/mean for σ) can be considered (only slightly more than unity),

unless the correlations are very short range vis-à-vis the MFP (defined here as 1/σ,

even though this is known to be an underestimation [44]).

of all 3D RT models under the assumption of a fixed mean optical depth. In this case,

we have a fixed volume integral, hence mean value, of σ.

How does one compute ǫ? Recalling that over-scores denote averages over the

spatial variability, Cairns et al. show specifically that the ensemble-average effects

moderate-amplitude fluctuations on the 3D RT equation are captured with

ǫ = a −
√

a2 − v2 (107)

where

v =

√

σ2

σ2 − 1, and a =
1

2

(

1 +
1

σlc

)

. (108)

Parameter v is the standard-deviation-to-mean ratio, itself expressed with the RMS-to-

mean ratio, for σ and we denote here the characteristic correlation scale of the spatial

variability by lc. We see that

• for small-scale fluctuations (i.e., when lc ≪ transport MFP ≈ 1/σ), we anticipate

little effect since ǫ ≈ (v/a)2/2 ≪ 1 (irrespective of v) as a becomes very large;

• for fluctuations at larger scales (i.e., when σlc & 1), we can have a strong impact

(ǫ . 1/2) although this scenario clearly stretches the validity of the model,

in particular, amplitude is then limited to cases where v2 . a − 1/4, hence

σ2/σ2 . 5/4 + 1/σlc;
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• for fluctuations at the largest scales (σlc ≫ 1, hence a ≈ 1/2 and v . 1/2), one

should average over macro-scale responses rather than try to find a single effective

medium to account for micro-scale variability effects.

Figure 11 illustrates this analysis of ǫ. In the last (“slow”) variability regime, the large-

scale averaging of radiative responses can be computed locally using a strong uniformity

assumption, which is the essence of the independent pixel/column approximation

described next in a special (but representative) case.

The present authors come to the same scale-based classification of variability effects

in RT from the standpoint of steady-state 3D diffusion theory [100]. They arrive at

essentially the same scale-by-scale breakdown of spatial variability impacts using a the

first-principles analysis of the propagation process [44], the only difference being that the

transport MFP used in the above arguments is replaced by the usual MFP describing

the mean distance between successive scatterings or, e.g., an emission or an absorption.

In the same article Davis and Marshak show, incidentally, that the actual MFP is 1/σ in

a broad class of variable media with long-range correlations, including clouds. Moreover,

that estimate always exceeds 1/σ (they are equal only when σ is uniform). This is a

direct consequence of Jensen’s inequality [101] in probability theory concerning averages

of functions with definite convexity (in this case, the exponential).

5.1.2. Independent Pixel/Column Approximation (IPA/ICA). From the standpoint of

computational expediency, the next best thing to homogenization, leading to a single

1D RT problem to solve, is the IPA/ICA where a finite number of such problems are

solved. Alternatively, the closed-form solution of a 1D RT problem, such as obtained in

§3.1, may be averaged analytically over an explicitly assumed PDF for the variability of

the an optical property, typically, cloud optical depth. In this case, we do not leave the

realm of closed-form expressions, with the obvious computational efficiency that ensues.

We demonstrate with two IPA/ICA computations.

First, we invoke the simplest possible model for spatial variability of clouds, which

is certainly the linear mixing model based on “cloud fraction” Ac (between 0 and 1).

We will see it again in §7.3 and §8.1.1. As easy as it is to conceptualize, defining and

measuring Ac empirically is not straightforward, in particular, because it depends on

what type of instrument is used and the resolution within a type [102]. At any rate,

it is the first and still foremost application of the IPA/ICA concept, predating by far

that terminology and the acronyms (introduced in the early 90s [103, 104]). Take, for

instance, scene albedo under a given solar illumination. The clouds are assumed plane-

parallel and give R(µ0; τc) while the clear sky gives R(µ0; τa) where the subscript ‘a’

pertains to the aerosol load. In combination, we get

R(µ0; τa, τc, Ac) = Ac × R(µ0; τc) + (1 − Ac) × R(µ0; τa).

Simple enough! Since R(·) is a concave function (∂2
τR(µ0; τ) < 0), R will be smaller

than R(µ0; τ) where τ = Acτc + (1 − Ac)τa. This indeed the definition of concavity.



3D Transport of Solar Radiation in Clouds 53

Figure 12. Transmittance and associated mean path for a Gamma-weighted diffusion

model. (a) The expression in (111) is plotted versus τ t for selected values of a in log-

log axes; we note the increasing transmission as the unresolved variability increases

(a decreases) at fixed τ t. (b) Mean path length, in units of H , from (112) versus τ t

for the same values of a as in panel (a); we note that paths decrease on average as

variability increases (a decreases) at fixed τ t. See text for more explanation.

Whether for the whole atmosphere or a single layer, we expect optical depth τ

to vary continuously rather than in above binary fashion. In the Gamma-weighted

IPA/ICA [105], one assumes that the 1-point statistics of τ follow:

Pa(τ) =
1

Γ(a)

(a

τ

)a

τa−1e−aτ/τ , (109)

where

a =
τ 2

Varτ

=
1

τ 2/τ 2 − 1
(110)

is the new variability parameter. This particular choice of variability model follows

naturally from the ease of integrating rational functions over arbitrary combinations of

power laws and exponentials, resulting at most in exponential integral functions and/or

incomplete Gamma functions; possibly infinite series thereof that are easily summed

numerically to a pre-specified accuracy. The above choice of PDF for τ is also justified

on the basis of fine-scale satellite observations of many different kinds of cloud fields

[106].

To illustrate, we plot in Fig. 12a

T a(τ t) =

∞
∫

0

1

1 + τt/2χ
Pa(τt)dτt = ξeξEa(ξ)

∣

∣

ξ=2χa/τ t

. (111)

Although in a different notations, Oreopoulos and Barker [107] did the same

computation. Here, Ea(ξ) is the exponential integral of any real order a > 0, and

we note that ξ = a/Z from (97). We notice in Fig. 12a a systematic positive bias
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of T a(τ t) with respect to T∞(τ t) = 1/(1 + τ t/2χ). We retrieve the well-known result

in 3D RT: structured clouds transmit more than their homogeneous counterparts with

the same mean τ , an immediate consequence of Jensen’s inequality [101] for a convex

function like T (τt).

As another illustration, we plot in Fig. 12b

〈ct〉T/H =
T × 〈ct〉T
T a × H

=
χ

2

[

1 + a + ξ + (2 − ξ)/T a(ξ)
]

∣

∣

∣

ξ=2χa/τ t

. (112)

Note how we have properly weighted the path moment for transmitted light 〈ct〉T from

(99), and then averaged over the Gamma-PDF for τ in (109), and finally normalized

the result by T a in (111). As it turns out, the whole variation of flux-weighted mean

path, T × 〈ct〉T = χ(τ 2
t + 6χτt + 6χ2)/(τt + 2χ)2, is between χ . 1 and 3χ/2 ≈ 1. So

the systematic trend toward shorter paths due to spatial variability is traceable to the

normalization by T a. Although one should also bring reflected light into the balance,

shorter paths translate to systematically less absorption in variable clouds. In the limit

of asymptotically large τt, (111) and (112) yield respectively

T a ∝ τ
−min{a,1}
t and 〈ct〉T /H ∝ τ

min{a,1}
t . (113)

We resume our discussion of this simple variability model in §7.1 where we find its prime

application to GCM parameterization improvement.

5.1.3. Mean Field Theory. To find an example of a mean field theory for RT that

applies exclusively to domain averages, hence very large scales, we revisit the time-

dependent random walk model used in §4.3. To this effect, we consider the present

authors theory of “anomalous” diffusion of solar radiation. In their original paper,

Davis and Marshak [53] generalized the random-walk model to situations where steps

are usually small (inside clouds) but not infrequently very large (between clouds). See

schematic in Fig. 13.

Davis and Marshak [53] assumed PDFs for step size s with power-law tails,

∼ 1/s1+b, such that all moments of order q > b are divergent. Yet it seems natural

to require that the MFP (average value of s) be finite, hence we require b > 1. There is

indeed theoretical proof [44] stated in section §2.3 that the mean direct transmission law,

hence free-path distribution, is sub-exponential. Moreover, there is empirical evidence

[106] that the variability of extinction averaged over a range of scales is Gamma-like;

this in turn leads to power-law mean transmission [107].

We continue to use here the transport MFP ℓt = 〈s〉/(1 − g) as the effective MFP

for an isotropic (conservative) scattering. They then addressed finite cloudy media with

slab geometry (thickness H), showing

(i) that transmittance Tα scales as τ
−α/2
t , and

(ii) that mean path for transmitted light 〈ct〉T goes as H × τα−1
t ,

where α = min{b, 2}. These scaling laws revert to our findings in section 4.3 for any

b ≥ 2 (the upper limit for α), and we note the difference with the Gamma-weighted

ICA predictions in (113).
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Figure 13. Schematic of the anomalous diffusion and transport models for domain-

average solar RT in columns with spatially complex cloudiness. Sunlight gets trapped in

clouds were it is the random steps in multiple-scattering trajectory are small. However,

it makes frequent large jumps between the clouds and/or the surface, where it is

absorbed (or detected). Also not the large fraction of light bounced back to space. In

the anomalous diffusion model [53], the random steps are drawn from symmetric Lévy-

stable distributions [108] with indices 1 < α ≤ 2 (α = 2 reverts to the classic Gaussian

case, and “normal” diffusion ensues); computations are analytic. In the anomalous

transport model [54], the random steps s are drawn from the Gamma-weighted mean

direct transmission law Pr{s > S} = (1 + σS/a)−b where 1 < b ≤ ∞ (b = ∞ reverts

to the classic exponential case, and “normal” transport ensues); computations are

numerical, using a modified 1D MC code. The asymptotic laws for the responses in

reflection and transmission are as in the diffusion model, with α = min{2, b}, by Lévy’s

generalized central limit theorem [109].

For a more transport-like mean field theory, yet closely related to the above

anomalous diffusion model, we refer to Davis [54]. Therein, a new 1D integral RT

equation is obtained and solved numerically, and we refer to this model as anomalous

transport. Large τt behavior is as predicted by anomalous diffusion as far as the scaling

is concerned. However, the τt values at which the asymptotic regime is achieved are

remarkably large. This cast doubts about the relevance of (analytic) anomalous diffusion

to real cloudy atmospheres and argues for the more robust (computational) anomalous

transport model.

5.2. Dealing with Resolved Spatial Variability

Suppose now that all the spatial variations of the cloud optical properties are specified

down to some “small” scale. Furthermore, the radiation fields may required down to the

same scale, or maybe only to a courser one. Either way, 3D RT modelers must find ways
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to deliver answers for the given 3D cloud structure, and not any other. Fortunately, there

a many ways of solving specific 3D RT problems, but implicit in the above challenge is

to deliver an answer at some pre-defined accuracy with an efficiency that may preclude

any of the standard approaches.

So we need to discuss solutions of both the full 3D RT problem based on the linear

Boltzmann equation, as well as more practical approximations thereof. The former

are very briefly described in §5.2.3, primarily as accuracy benchmarks. The latter are

exemplified by computational 3D diffusion modeling, a problem set up in §2.4 and used

analytically in §6.1; for a relatively recent survey of numerical 3D RT approximation

techniques, we refer the reader to Davis and Polonsky [110].

As an intermediate model that lies at the crossroads of standard 1D RT, full 3D RT,

and efficient approximations thereof, we have the local IPA/ICA, as defined in §5.2.2.

This is a straightforward answer to the resolved variability problem: we compute for each

vertical column the 1D RT solution, but don’t necessarily perform the spatial average

used in §5.1.2. At that point, we only had statistical knowledge of the variability, but

here we know all the details.

First, however, we must touch on another issue. If we are pursuing more realistic

modeling of RT in clouds, then it can only be as realistic as the 3D representation of

the clouds themselves. In the applications, this preliminary question has to addressed

in order to gauge the computational effort in the RT. There are both stochastic and

physics-based approaches to cloud modeling:

• On the one hand, it is hard to argue against using state-of-the-art cloud process

models precisely because they are based on real physics: fluid dynamics, fine-

scale turbulence closures, multi-phase thermodynamics, cloud microphysics, even

radiation (at least from a 1D RT model). These models unfold in either

2D or 3D. This choice usually depends on whether the microphysics (droplet-

scale processes) use just a few moments, or the full particle-size distribution.

However, hardware advances are now enabling 3D dynamics with so-called “bin”

microphysics. Although they are as physically-correct as possible, they require the

specification of very many atmospheric parameters, and remain computationally

expensive.

• Because they are not burdened with the memory requirement to capture complex

multi-physics, specific realizations of stochastic models can have almost arbitrarily

fine resolution. For the same reason, they are very efficient. Best of all, they can

be tuned to reproduce the spatial statistics observed in real clouds. Stochastic

cloud models are necessarily based on either ground-, aircraft- or satellite-based

measurements of cloud structure; so they are constrained at most in 2D. Currently,

there are no operational techniques to determine full 3D cloud structure, but on-

going research may soon fill this gap [111].
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Figure 14. A convenient stochastic cloud model for radiative smoothing studies. Left:

In the 1st step, a fraction f1 of cloud “mass” is transferred in a random horizontal

direction from one half to the other. For every step after that, a fraction fn is similarly

transferred at scale 1/2n such that fn/fn−1 = . . . = f2/f1. Right: The outcome for

one realization at n = 14 when the parameters are f1 = 1/4 and f1/f2 = 21/3.

This so-called “bounded cascade” model [112, 113] has been tuned to yield a 1-point

standard deviation of 1/3 of the (unit) mean and 2-point correlations reflecting a

Fourier spectrum in 1/k−5/3. These values are typical of the observed spatial variability

of LWP [117] or LWC [114] for real marine Sc clouds.

5.2.1. Stochastic Versus Physics-Based 3D Cloud Models. Taking a historical

perspective, atmospheric 3D RT started logically with horizontally finite but otherwise

homogeneous clouds (e.g., the spheres used in §3.3). Then the 3D RT community moved

to stochastic models that enabled much progress in 3D RT phenomenology during the

90s. One of the most popular stochastic models was the bounded cascade introduced by

Cahalan in 1994 [112]. Its simple generation algorithm is described in Fig. 14, and one

realization is plotted. It is custom-designed to have a power-law horizontal wavenumber

spectrum in k−5/3, although other exponents between −2 (included) and −1 (excluded)

can also be obtained. This mimics what has been observed again and again in nature.

Moreover, the 1-point statistics of the bounded cascade are quasi-lognormal as is also

as observed in real clouds. Finally, the bounded cascade has interesting multifractal

properties [113], again as seen in in-situ data from real clouds, i.e., long records from

aircraft sampling the horizontal fluctuations of microphysical properties such as LWC

[114, and references therein]. But there are other stochastic models that can do all that

just as well [115, 116]. So which one to use? It can be as simple as a matter of taste.

The bounded cascade, and other such scale-invariant constructs (cf. [116, and

references therein]), thus offered the community a simple way of producing geometrically

plane-parallel clouds that had rich texture in their horizontal structure. As for

other fractal and multifractal stochastic cloud models, 2D generalizations were quickly

developed during the 90s and just as quickly put to use in MC simulation studies

[118, 119]. Part of the power of stochastic cloud model is that only a small number of

parameters need to be specified (say, .4) to control the rules that use a random-number

generator, and out comes a cloud field with realistic 1- and 2-point statistics, possibly
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more. Eventually, non-parametric data-driven stochastic models were developed

[120, 121, 122, among others], which will generate realizations with the same specified

statistics as (almost) any type of multivariate cloud data. In a sense, these models have

very many parameters: the number of data-points or, at least, the number of bins in

the histograms, correlation functions, etc., used to synthesize new realizations).

From there, it is a small step to go from such evolved stochastic models to physics-

based dynamical cloud models, which over time were getting undeniably better (with

more physics, hence more realism, and more resolution). It is revealing that, in this

review, the older work we cover is based on bounded cascades and kindred stochastic

models (cf. §8.1.2) while the most recent work is based on cloud scenes generated with

LES models and CRMs (cf. §8.2.2). It is also revealing that contemporary LES-based

cloud models can use the fractal properties of their output as validation that they are

capturing the nonlinear physics correctly [123].

5.2.2. The Local IPA/ICA. In §5.1.2 we presented the IPA/ICA as a statistical

technique based on available 1D RT theory to cope with unresolved spatial variability

by averaging the 1D RT results over the 1-point cloud variability. However, in the

present problem posed by resolved cloud structure, the idea of using 1D RT to predict

not just a domain average but also the fluctuations of the radiation field itself is worthy

of consideration.

Assume, for simplicity, that only the extinction coefficient σ(x, y, z) varies spatially

within a plane-parallel medium Mpp(H) occupying the space between z = 0 and z = H ;

Mpp(H) need not be the full support of the extinction field since there can be substantial

regions of optical void inside Mpp(H). With this option in mind, assuming outer

geometry is a plane-parallel slab is not much a constraint.

Formally, we can define without reference to any grid

τ(x, y) =

H
∫

0

σ(x, y, z)dz (114)

All other optical properties, single-scattering albedo ̟0 and phase function P (Ω′ → Ω),

including asymmetry factor g in (20), are assumed uniform in Mpp(H), only for

simplicity. The local IPA/ICA prediction for, say, reflected boundary flux is then

F1D(x, y) = µ0F0R(τ(x, y), ̟0, g; µ0).

Let us put this idea into the broader context. The uniform plane-parallel slab model

for clouds is much maligned by the 3D RT community, for scientifically sound reasons

(cf. §6). However, that simple model is actually just one possible approximate solution

to a difficult problem. Granted, one that has been abused. This abuse has established

the plane-parallel model as an apparently immutable standard of reference, at least in

atmospheric 3D RT research.

In the not too distant future, we hope to this perspective reversed. At present, the

plane-parallel model presented as the only one that is deemed a priori to be “practical”

enough for use in operational settings. We would rather see the plane-parallel model
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be humbly submitted as a poor-man’s approach to the challenging problem of radiation

transport in the real 3D world. At that point, 3D RT becomes the standard of reference

in the optics and energetics of the Earth’s cloudy atmosphere. In the interim, we

continue to use the plane-parallel slab model (where, by definition, all net horizontal

fluxes are neglected) to predict even highly-resolved radiation fields. Consideration of

computational limitations should be secondary, partly because computational resources

are improving tremendously from decade to decade ( the life-cycle of a major program or

mission), partly because of the on-going efforts described in Sections 7–8 to mitigate—

even exploit—3D RT effects.

5.2.3. Computational 3D RT. There will always be a need for high accuracy and

high precision benchmarks in 3D RT. In this subsection, we overview the two general

numerical techniques: random and deterministic quadrature methods. The interested

reader is referred to a relatively recent survey by Evans and Marshak [124, and references

therein] for more details.

In short, there are deterministic and probabilistic (Monte Carlo) methods for

solving the integro-differential 3D RT equation in (8), and there are potentially very

powerful hybrid methods. For easy reference, we rewrite the steady-state version of (8)

succinctly as

LI = SI + q, (115)

where L is the (differential) linear transport operator Ω · ∇ + σ and S is the (integral)

scattering operator σs

∫

4π
P (Ω′ ·Ω)[·]dΩ′. This equation can be put in a purely integral

form,

I = KI + Q (116)

where

K = L−1S (117)

is the full transport kernel, and

Q = L−1q. (118)

The physical interpretation (and numerical implementation) of the integral operator

L−1 is an upwind “sweep” through the 3D medium, in this case, collecting in Q all

the light directly transmitted, using (12), from the primary sources in q to the generic

point-and-direction of interest (x,Ω). We will assume steady sources for the time being.

Formally, the solution of (116) can be written as a Neumann series

I = (1 −K)−1 Q =
∞
∑

n=0

KnQ. (119)

Both determinstic and Monte Carlo methods capitalize on this expansion by successive

iterations of K, i.e., successive orders of scattering (a.k.a. source iteration). The

convergence rate of the Neumann series, and possibly its acceleration, is a central
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question in numerical transport methods. It is out of our present scope, but it should

be known that the answer involves the eigen-value spectrum of the operator L − S in

the integro-differential form of the RT equation in (115). In other words, finite (possibly

complex) numbers η that give non-trivial solutions to (S − L)I = ηI. See Case and

Zweifel’s classic monograph [125] for more details.

To make this classic decomposition more transparent, suppose we know all the

terms in (119) for some RT problem with everywhere conservative scattering (̟0 ≡ 1);

call it I(1) =
∑∞

n=0 I
(1)
n . Then suppose we want to know the solution of the same

problem but with some uniform level of absorption (i.e., 0 ≤ ̟0 < 1). We can factor

out ̟0 from each term in (119), leading to

I(̟0) =
∞
∑

n=0

I(̟0)
n =

∞
∑

n=0

I(1)
n ̟n

0 (120)

where the nth term of this Taylor series in ̟0 is the contribution to I(̟0) of radiation

scattered n times. Although it is physically impossible to filter orders-of-scattering,

some instruments are designed to select them as best possible. Transmittometers use

only the 0th-order term I
(̟0)
0 , while standard lidars use only the 1st-order term I

(̟0)
1 .

In practice, both of these types of observation need to be corrected for the presence of

all the higher-order terms as soon as they collectively exceed the tolerance threshold for

systematic overestimation.

Considering the expansion of the steady-state Green function into its order-of-

scattering components in (120), it is interesting to note that both G
(̟0)
0 (x,Ω) and

G
(̟0)
1 (x,Ω) are singular in the following sense. Given a distribution source terms

δ(x − x0)δ(Ω − Ω0), where either x0 or Ω0 span less than their full supports, there

is a measurable subset of points (x,Ω) in the transport phase space where the resulting

superposition I
(̟0)
n (x,Ω) (n = 0, 1) has discontinuities. An interesting corollary of this

singularity property in inverse transport theory [126, and references therein] is that, with

full and perfect knowledge of only these two terms, one can reconstruct exactly both

σ(x) from I
(̟0)
0 and σs(x)P (x,Ω′ ·Ω) from both. Computed (X-ray) tomography works

because ̟0 ≈ 0 in (120) and, moreover, the robust features in X-ray images that enable

the reconstruction technique to overcome the effects of noise and residual scattering

result directly from those singularities. The corresponding instrument in atmospheric

research is the transmittometer, only interested in the non-scattered light I
(̟0)
0 . Lidar,

and all forms of radar, are only interested in I
(̟0)
1 for a special value of Ω′ ·Ω = −1, and

they are indeed our main sources of tomographic information about the atmosphere. All

higher-order terms in (120) are smooth even for a single δ-source. Consequently they are

an impediment to standard tomographic methods, lidar and radar in particular. Near

the end of this review, we will describe a novel type of lidar (as well as a closely related

passive solar technique) that performs a limited but useful form of cloud tomography

using only the diffuse multiply-scattered light field.

Both deterministic and Monte Carlo methods call for a grid, Cartesian or otherwise

convenient, or an unstructured mesh, to define (in computer memory) the spatial



3D Transport of Solar Radiation in Clouds 61

Figure 15. A transect of mean radiance for the pencil-beam illumination problem

inside a finite homogeneous slab, from SHDOM. The optical medium is a uniform non-

absorbing (̟0 = 1) plane-parallel cloud of thickness H = 1.2 km and with extinction

σ = 30 km−1, hence optical thickness τ = σH = 36. The phase function is for a “C1”

droplet-size distribution for λ = 532 nm. Mean radiance, J/4π from (13), is plotted

for a domain larger than the cloud itself. A close look at the logarithmic color-scale

reveals that the light field in the cloud is decaying exponentially with distance from

the source as dictated by ρ⋆ in (86). The “rays” emanating from the source region

near the top of the cloud are an artifact of the discrete ordinates scheme (in this case,

Nµ = 12 and Nφ = 24). This result was graciously contributed by Dr. K. Franklin

Evans (U. of Colorado).

variability of the optical medium as well as the source term q. It covers a finite subset M

of R
3. Deterministic methods also need the spatial grid to discretize the differential part

of the 3D transport equation represented in (115) by LI. Furthermore, these methods

call for a discretization of direction space (“SN” methods)—or a truncated expansion

in spherical harmonics (“PN” methods)—or both, to treat the scattering integral

represented by SI. The algorithm specified in (119) is known as “source iteration,”

and there are clever ways of accelerating its convergence, cf. [127, 128, 129, among

others]. In the atmospheric 3D RT community, there is one dominant deterministic

model called Spherical Harmonics Discrete Ordinates Method (SHDOM) by Evans [130].

Figure 15 shows a detailed 3D computation of the directionally-averaged radiance field,

J(x, 0, z)/4π from (13), for the rotationally-symmetric boundary source Green function

of a uniform cloud in the spatial domain. It is plotted both inside and outside the cloud

using a logarithmic color scale.

Finally, both deterministic and Monte Carlo methods, as described above, can be

generalized to account for time-dependence. This is however by far easier with MC

methods than to have to discretize t. Even though there is not much extra burden

on memory, one needs to carefully maintain congruence with the discretization of x in

order to keep the numerical scheme stable. In MC, it is is as simple as adding path ct

as a fourth independent variable to (x, y, z) when generating the random trajectories;
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it just the running sum of all the steps between scattering events, without the direction

cosines that apply to the spatial variables. Many time-dependent MC results were used

to generate the figures in the previous section.

Where Monte Carlo methods depart fundamentally from there deterministic

counterparts is that they only need a grid or mesh to define the spatial distribution

of optical properties and sources. After that, the elements of K in (117) are used as

rules to generate a random realization of a Markov chain of propagation and scattering

events. The source term q is used to generate random starting points and the chain is

stopped, in the absence of absorption, when it crosses a boundary of M. In the presence

of absorption, there is a finite probability of terminating the chain inside the medium:

alternatively the “weight” of the roaming Monte Carlo “particle” can be reduced to

track absorption. There are various ways of tallying Monte Carlo particles, with or

without weights, to estimate precisely what is asked of the 3D RT model.

Monte Carlo is at its best when tasked to compute spatial and/or angular integrals.

Formally, we seek

E = (f, I) =

∫

4π

∫∫∫

M

f(x,Ω)I(x,Ω) dxdΩ. (121)

where f is the “response function” of a virtual detector inside or at the boundary of

M. The bigger the support of f , the better accuracy is achieved for E, simply because

all the more histories will contribute. We know the convergence rate is slow, in 1/
√

N

(where N is the total number of histories generated); so the size of the support of f

matters for the variance of the estimator, but its choice is dictated by the application.

So, for a given application, in atmospheric RT in particular, there is always a tradeoff

study to perform between deterministic and MC methods, as recently emphasized by

Pincus and Evans [131].

Now, independently of f , there are many clever ways of reducing MC variance

in general [132, 133, among others], and they find their way into atmospheric RT

applications [134, 135, among others]. The most effective are arguably to use an

approximate deterministic solution to guide the sampling and determine the weight

multiplier; these are the so-called “hybrid” methods and remain an area of open research.

It is important to note that, in MC simulation, there need not be any forced

truncation of the Neumann series in (119). Indeed, if a particle wanders for too long

(or into regions of less interest) by some criterion, it can be terminated at the flip

of a digital coin ... or continued (temporarily) with twice the weight. This game

of “Russian Roulette” increases somewhat the variance, but ensures that there is no

bias in the estimate of E. It is also important to remember that, if f describes a

domain-scale integration, as in the estimation of total (as opposed to local) reflectance

or transmittance, MC can be not only more accurate but also faster than a deterministic

estimate. Indeed, in the deterministic model, radiance is computed everywhere whether

or not it is required. When local values of the boundary-leaving fluxes—and worse

still radiance—are required, then deterministic methods have an edge. Figure 16 shows

Monte Carlo estimates of the boundary-source/boundary-detector Green functions of



3D Transport of Solar Radiation in Clouds 63

Figure 16. Boundary fluxes for the pencil-beam illumination in a 2×2 km2 domain for

a finite homogeneous slab, from MC. The optical medium is a uniform non-absorbing

(̟0 = 1) plane-parallel cloud of thickness H = 0.3 km and optical thickness τ = 13.

The phase function is H–G, in (33) with g = 0.85. Boundary fluxes are plotted for

reflectance (left), F−(x, y, 0), and transmission (right), F+(x, y, H), on 128×128 grids.

The isophotes are on a log-scale, so we recognize the exponential decay controlled by

ρ⋆ in (86). The double-headed arrows on the side indicate the RMS values for ρ, i.e.,

〈x2 + y2〉1/2

F (F = R, T ). The signature numerical noise of the MC method is visible

at the lowest light levels. In this case, 108 histories were traced and the this particular

cloud leads to R ≈ T ≈ 0.5, leading to ≈0.5% noise in the center and ≈5% near the

edge. Reproduced from Ref. [136].

a homogeneous cloud; the numerical noise is evident and increases as expected as

the number of locally tallied histories decreases, i.e., as the distance from the source

increases.

The atmospheric 3D RT community is overwhelmingly dominated by Monte Carlo

modelers. The previously-mentioned SHDOM code is practically the only deterministic

one in use; however, a recent and welcome addition to this short list has been announced,

the RADUGA model [137]. For a recent survey of the various 3D RT models in use and

an illustration of their typical capability, we refer to Cahalan et al.’s [138] overview of

the Intercomparison of 3D Radiation Codes (I3RC). The I3RC is a grass-roots initiative

that built up a challenging suite of cases designed to exercise the models with increasing

scene complexity.

6. Assessment of 3D Damage to 1D RT Modeling

Although there has been a sustained interest in spatially variable sources in uniform

media, this review included, the vast majority of 3D RT studies are based on spatially

variable media and uniform sources. From the earliest theoretical studies [8] to the most

recent data analyses [139], the latter use 1D RT as a reference. It may seem strange to

use such a coarse representation of reality as a standard benchmark but we must bear in

mind that, when i comes to the applications, RT is generally just a means to an end. So

there is usually an expectation—and often a requirement—of expediency. Typically, the
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effects of 3D RT with respect to this benchmark are quantified under some reasonable

assumption such as conservation of the total mass (i.e., number of material particles).

We think of this activity as an assessment of the damage that 3D RT causes the accepted

operational 1D solution to the RT problem embedded in any number of applications.

6.1. 3D RT Phenomenology: How Radiation Flows Around Opaque Regions and is

Channelled into the Tenuous Ones

One-dimensional atmospheric RT modeling is always aligned with the vertical (z) axis.

Cloud shadows cast by the Sun under oblique incidence (as seen, e.g., through an

airplane window) are the most obvious cloud-related 3D RT effect. This may not be a

big concern in the case of extensive stratiform clouds since they have, in the sense of

fractal geometry, much more bulk than boundary both in 3D space and under vertical

projection. However, we are curious about how this zeroth-order scattering statement

generalizes to diffuse light and how it flows through 3D media such as cloudy skies.

As far as we know, not much can be proven analytically in full 3D RT in a scattering

medium. Consequently, general statements about 3D RT phenomenology tend to be

qualitative and substantiated largely by numerical experiments. The present authors

have attempted to create at least one exception to this rule. There is a cost however,

which is to use the asymptotic limit of 3D RT captured by diffusion theory. There is no

doubt that many instances of solar RT in real clouds are in the diffusion regime [140].

However, we already know that diffusion does not do so well in the radiative boundary

layer, with a few MFPs from all boundaries. It appears that this is not a road block.

The details of the derivation are in the 2000 paper by Davis and Marshak [100].

Here we will only state, illustrate and discuss the “theorem.” Let M be a 3D optical

medium based on M0 = {x ∈ R
3; 0 < x < Lx, 0 < y < Ly, 0 < z/H < 1}: it is contained

in a plane parallel slab of thickness H along the vertical and its spatial variability in

M0 is replicated cyclically in the horizontal plane with periods Lx,y in the x, y directions

respectively. The medium M is purely scattering (̟0 = 1) and with scaled optical depth

(1− g)τ sufficiently large for diffusion to be a reasonable model for the RT. Sources are

isotropic and uniformly distributed on cloud top (z = 0), i.e., we neglect radiative

boundary-layer effects in the solar case, with F0 being the incoming flux, normal to

the cloud top. Cloud base (z = H) is purely absorbing. We use the homogeneous

cloud case as a reference for the total transmittance/reflectance computations, e.g., R1D

results from the fixed mean extinction

σ =
1

LxLyH

∫∫∫

M0

σ(x)dx.

We then compare to R1D the corresponding outcome R3D for any realization σ(x) of

the optical variability with the same mean. Note that holding the mean σ(x) constant

is equivalent to conserving mass, cf. (9) for the relation between σ(x) and scattering

particle density.
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Figure 17. Schematic of radiation channeling. Regions with positive and negative

fluctuations of extinction in a plane-parallel cloud under uniform normal or diffuse

illumination are illustrated. They have opposite effects on the local values of the

vertical component of the vector flux. Reproduced from Ref. [100].

The flow obeys ∇ · [σt(x)−1∇J ] = 0 with Robin-type BCs [1 − χσt(x)∂z]J |z=0 = 4,

[1 + χσt(x)∂z]J |z=H = 0. Domain-average reflectance is given by

R3D = R(x, y) =
1

2LxLy

Lx
∫

0

Ly
∫

0

J(x, y, 0)dxdy − 1

A straightforward non-perturbative computation yields [100]

δR

R1D
= 3χ

δσ(x)δFz(x)

σF0
(122)

where δR = R3D − R1D, δFz(x) = F
(3D)
z (x) − F

(1D)
z (z), and δσ(x) = σ(x) − σ. So

the relative change in R caused by 3D effects is proportional to the spatial correlation

between:

• fluctuations of extinction—hence of density—relative to and normalized by its mean

value, and

• deviations of net vertical flux from the 1D RT prediction (based on the mean

extinction) and normalized by the incoming flux.

Figure 17 shows schematically how these quantities vary in opposite directions. This

systematic anti-correlation will clearly dominate the spatial averaging. We thus predict

that δR < 0: reflectance of a 3D cloud is always less than reflectance for the

homogeneous medium with the same total amount of scattering material.

This prediction applies to the large-scale flow of radiation in (or around) clouds.

The same forecast was made in §5.1.2 based on the ICA as applied to domain averages.

However, the present computation makes no such assumption. One can imagine 3D

optical media decomposed into vertical columns of finite width where each column has

the same total optical depth (large enough for diffusive transport to prevail), but the

distribution of extinction in each one is random. In this case of constrained randomness,
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Figure 18. Radiation channeling by a finite cloud under oblique illumination. Both

the reflected-to-space and transmitted-to-ground radiance fields are affected, positively

by the flux deflected on the illuminated side, negatively by the shadowing. Reproduced

from Ref. [100].

RICA = R1D yet we still have R3D < R1D because of how the radiant energy is

“channeled,” to adopt the expression of Cannon [141]. As seen in Fig. 17, the solar

radiation is essentially reflected off the opaque regions of the cloud and concentrated

into the tenuous ones.

The inherently 3D phenomenology of radiative channeling emerging from the above

analysis is based, for simplicity, on an isotropic illumination scenario. The symmetry of

the illumination can be thought of as a spatial average over the hemisphere illuminated

at any one time by the Sun. However, the idea of a uniform cloud layer covering the

planet as a reference is not very helpful. So it is of interest to ask about channeling in

the case of a collimated and, in general, oblique illumination. Figure 18 illustrates this

situation, and we see that the 3D cloud-driven perturbation of the flow contributes to

the reflected light returning space and to the transmitted light that reaches the surface.

We thus expect that 3D effects not captured by the ICA will largely, but not completely,

cancel in quantities averaged over extended domains.

6.2. Large-Scale Fluxes for GCMs, Small-Scale Fluxes for LES/CRMs

The essentially constant irradiation of the Earth with solar radiation, from the UV

to the short-wave IR, is the primary source of energy for the climate system. So the

climate-driven task for RT is to compute across the whole solar spectrum how much

energy is deposited at the surface, how much in the various parts of the atmosphere,

and how much goes back to space. Other physical models take care of the rest of the

story: what happens to the influx of solar heat as it is pooled with other types of heat

flux (e.g., phase changes).

The fundamental quantity of interest here is −∇ · F in W/m3, since spectrally

integrated, eventually converted in to a ◦/day rate. By conservation of radiant energy

(16) for steady sources, this rate can be computed from σa(x)J(x), when both direct

and diffuse radiation is included (hence qJ (x) ≡ 0). So the kinetic recipe is simple: (1)

determine what is the local density of radiant energy J(x)/c in J/m3 from (13), then
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Figure 19. Schematic of the GCM solar RT problem and the same for a cloud-process

(CRM or LES) model. The aspect ratio of the GCM grid-cell on the right-hand since

it is very large; this is very helpful in simplifying the RT problem, largely by bringing

the ICA to bear on the estimation of the domain-average heating rate profile. The

aspect ratio of a typical column in a CRM or LES is roughly the inverse of that of the

GCM grid-cell; this is a scenario for all kinds of 3D RT effects, starting with shadowing

cells downstream from the Sun, and re-illuminating ones upstream.

multiply by the local collision rate cσa(x) for radiative absorption processes in s−1. This

is of course easier said than done with RT models. The scale at which we wish to know

−∇ ·F will determine the approach.

Figure 19 illustrates schematically the two main situations encountered in

atmospheric RT targeting the energy budget. The rather large domains spanned by

a single cell in a typical GCM, or a generic column in a CRM.

In the former case (upper panel), horizontal fluxes are arguably of minor

importance. Indeed, from our investigation of the spatial Green function in transmission

or reflection, we suspect that horizontal fluxes will unfold at most over scales comparable

to the thickness of the medium. In this case, the medium is much wider than it is thick.

So there is at least a chance that horizontal fluxes will cancel. On the other hand, it

matters greatly to get the vertical fluxes right. This is the ideal situation for the ICA

and that approximation has indeed proven very effective in improving the problem of

RT in GCM grid-cells; see §7.1.
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In the latter case (righ-hand panel of Fig. 19), what is happening in neighboring

columns clearly matters a lot. In this model for small-scale cloud processes, it is patently

absurd to force the radiation to flow up and down ... yet that is what is done routinely.

This is the effect of legacy: radiation parameterizations in CRMs are inherited from

GCMs, the obvious place a dynamical modeler would go to find a radiation scheme.

This radical modeling short-cut is certainly efficient, but is it justified?

Mechem et al. [142] recently showed that it is justified to rely on the ICA based on

an extensive study of coupled 3D RT (using SHDOM) and cloud dynamics (using the

U. of Oklahoma bin-microphysics LES) ... for nocturnal boundary cloud simulations.

Of course, the only radiation in these studies was in the TIR spectrum, which is

emission/absorption-dominated. Solar radiation by contrast is scattering-dominated.

Although absorption by the surface or (gases and particles in) the air is a necessary

ingredient for dynamical impact, scattering redistributes the radiant energy J(x) in all

three spatial dimensions in highly nontrivial ways. We are not aware of any systematic

investigation of the impact of solar 3D RT effects (shadowing, channeling, etc.) on

cloud dynamics using computational multi-physics models. We suspect the effect can

be significant. A preliminary study of 3D–1D solar RT differences in cloud dynamics

(using the community Weather Research and Forecasting model [143]) lead to a ≈10%

difference in precipitation in during the life-cycle of a convective storm system (W.

O’Hiroc, personal communication).

6.3. Scale Breaks: The Spatial Green Function Revealed

6.3.1. The Landsat Scale Break. Without the benefit of angular and spatial

integrations that promote cancellations, remote sensing signals (i.e., small-scale

radiances) can be affected by 3D RT effects much more than domain-average fluxes.

Consider high-resolution imagers such as the Thematic Mapper (TM) on Landsat with

30 m pixels, the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), even the MODerate resolution Imaging Spectro-radiometer (MODIS) and the

Multi-angle Imaging Spectro-Radiometer (MISR) with 15 m, 250 m and 275 m pixels

respectively on NASA’s Terra platform. Every element of radiant energy in those small

pixels that originated from somewhere else in the scene contributes to 3D RT effects that,

by definition, are not captured by the IPA. These imaging systems indeed have pixel

scales that are small compared to outer cloud scales, in particular, geometrical thickness

H . Recalling that the spatial reach of the transmitted and reflected Green functions are,

to a first approximation, ∼H . That is precisely how far we expect horizontal/non-IPA

transport will routinely will reach.

Figure 20 shows the Fourier spectrum of a Landsat (≈30 m resolution) image

of a small (≈60 km) portion of an extensive and persistent marine strato-cumulus

cloud deck. Such clouds are major contributors to the Earth’s global albedo, hence

climate balance, hence are of considerable interest. It had been noticed [144, 117]

that cloud radiance fields, as sampled by Landsat, exhibited a break in their k−5/3
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scaling around the equivalent in wavenumber space of 0.3–1 km; at smaller scales

(larger wavenumbers) there is a notable lack of variance relative to the extrapolated

scaling law. Various explanations had been advanced for this scale break that involved

a slew of processes ranging inherent cloud structure/dynamics (“it is real”) [117] to a

mismatch of the Thematic Mapper’s sampling (instantaneous FOV) and true resolving

power (“it is an artifact”) [144]. Davis et al. [136] explained the feature as a clear

manifestation of “radiative smoothing” [145, 146] that, in turn, is a direct consequence

of horizontal transport of radiation over scales commensurate with 〈ρ2〉1/2
R from §4 on

Green functions. MC simulations of 3D RT in perfectly scaling multifractal cloud models

were performed, which were considered at the time of heroic proportions (multi-day

runs). They showed that the scale associated with the critical wavenumber had the

same behavior with respect to H , τ , and even g, as the RMS horizontal transport

distance, i.e., ∝
√

Hℓt = H/
√

(1 − g)τ from (94).

6.3.2. The Zenith Radiance Scale Break. If one can essentially visualize the spatial

Green function for reflection in the Fourier spectrum of nadir radiance fields captured

by space-based imagers with sufficient resolution, what about zenith radiance that

reaches ground? Imaging is not an option but one can certainly point a narrow FOV

(NFOV) radiometry upward at a ground station and collect a time-series of zenith-

radiance measurements Izen(time). This is in fact very easy to do, as long as radiometric

calibration (and especially its maintenance) is not a requirement, as is the case here:

only relative fluctuations are of interest, so the notorious “arbitrary units” are good

enough. Then, to interpret spatially what was measured temporally, Taylor’s frozen

turbulence hypothesis is invoked: Izen(space) = Izen(time)|time=space/mean wind.

The left panel in Fig. 21 shows Izen(x) from under an extensive St layer based on

NFOV data for a non-absorbing (red) wavelength collected on October 8th, 1998, at

the Chilbolton Observatory (51.13◦N, 1.43◦W), UK, by Savigny et al. [148, 149]; their

sampling rate was 2 Hz, their longest record covered ≈4 hours (≈3 104 measurements),

and they were able to collect on three other days during the same month. Rather than

the frequency or wavenumber (Fourier) spectrum, the 2nd-order structure function was

used: SF(r) = [Izen(x + r) − Izen(x)]2. It has the advantage that, if there are data

drop-outs, they can simply be skipped. As for the k-dependence of the wavenumber

spectrum, one naturally seeks power-law behaviors in r:
√

SF(r) = [Izen(x + r) − Izen(x)]2
1/2 ∼ rh, (123)

where h is the Hurst exponent, a.k.a. the (global) Hölder-Lipschitz exponent.

A variant of the Weiner-Khintchin theorem for non-stationary processes with

stationary increments relates the wavenumber spectrum and the 2nd-order SF(r) [150]:

they form a Fourier transform pair. In particular, if the spectrum scales as k−β with

1 < β < 3 then β = 2h+1 and, more generally speaking, h = min{1, max{0, (β−1)/2}}.
Recognizable scaling behaviors are h = 0 for all stationary processes (i.e., that are

de-correlated over the associated range of r), h = 1/3 for turbulence-like variability
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Figure 20. The Landsat scale-break, as observed in Fourier space. The wavenumber

spectrum was derived by azimuthally averaging the 2D Fourier mode amplitudes,

squared, for a large portion of a Landsat-5 TM image, iteself of a small portion of

marine Sc deck. Full details are described by Davis et al. [136]. The inset shows

a 61×61 km2 portion of a Landsat image (0.52–0.69 µm channel) of the same type

of cloud captured during the same field campaign: the 1987 First ISCCP Regional

Experiment (FIRE’87) [147], where ‘ISCCP’ stands for International Satellite Cloud

Climatology Project.

(corresponds to a Fourier spectrum in k−5/3, as for the simple fractal cloud model in

Fig. 14), and h = 1 for all smooth (i.e., differentiable) fields. Interestingly, all three of

these regimes are present in right hand panel of Fig. 21:

(i) at the smallest scales, up to the extent of the transmitted Green function, which is

∼ H , Izen(x) is a smooth function (h . 1);

(ii) at the intermediate scales, the transmitted sunlight in Izen(x) follows the general

turbulence-like structure of the cloud (h . 1/3);

(iii) at the largest scales, the fluctuations of transmitted sunlight are decorrelated

(h ≈ 0).

The small-scale behavior is as expected in a fully 3D RT regime where radiative

smoothing occurs, noting that finite-size effects and noise prevent the empirical value
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Figure 21. The zenith radiance scale-break, as observed in the time domain (using

Taylor’s frozen turbulence hypothesis). Left: The solid black lines shows the time

series of Izen in arbitrary units, resampled in order to show the whole record and

leaving same visual impression as turbulence; the inset shows the raw 2 hz data, which

shows the fully smoothed fluctuations. The bold grey points are for the ground-based

time series of broadband flux; it behaves like a smoothed version of Izen, but for a

different reason: the angular integral of all the down-welling radiance corresponds to

a large-scale spatial average determined by the cloud ceiling height. Right: SFs for

Izen and the broadband flux as functions of r expressed in samples. A nominal 5 m/s

wind speed was used in the Taylor hypothesis.

of 2h from reaching the theoretical limit of 2. The two larger-scale behaviors are as

expected in IPC/ICA regimes where the 1D RT model is a reasonable approximation,

preferably adjusted for unresolved variability effects using one or another of the

approaches described in §5.1. Savigny et al. [148] found the predicted transition from

smooth behavior to turbulence-like behavior at time lags that translated (via Taylor’s

hypothesis) to scales commensurate with the thickness of the cloud deck, which has

known through collocated mm-wavelength radar.

Figure 22 shows SFs over a more limited range of scales for both MC and IPA

estimates of both transmitted flux T (x) and zenith radiance Izen(x) using a small

ensemble of bounded cascade models in 1D horizontal. It is clear that the realistic

light fields obtained by MC simulation capture the radiative smoothing regime as it

deviates from the IPA prediction at the smallest scales.

6.4. Retrievals of Cloud Properties

6.4.1. Cloud Optical Depth Retrievals. The RT model used in standard satellite remote

sensing retrievals of clouds is entirely 1D, being based on to two main assumptions:

clouds are horizontally homogeneous inside each satellite pixel (no unresolved variability

effects), and the radiative effect of neighboring pixels is negligible (no resolved variability
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Figure 22. Simulated structure functions for local transmittance and zenith radiance.

Scale breaks between smooth (h ≈ 1) and turbulent (h ≈ 1/3) behaviors are clearly

visible, respectively at ≈ H and ≈ H/2. The ensemble of 10 simulated realizations of

cloud optical depth were generated using a 10-step 1D bounded cascade model from

Fig. 14. Cloud parameters of interest are mean optical depth τ = 13, spectral slope

β = 5/3, and physical thickness H = 0.3 km (indicated here with a vertical dash-dotted

line). Scattering follows the standard H–G model in (33) with g = 0.85. SZA is 30◦.

Adapted from Ref. [90].

effects). Under these conditions, clouds can be represented as infinitely wide plane-

parallel slabs with uniform, or possibly z-dependent, properties.

Horváth and Davies [151] quantified how frequently the above assumptions are met

globally with high-resolution data set. They used the above-mentioned MISR radiances

reflected from water clouds over ice-free oceans. MISR views the earth at four VNIR

wavelengths with nine cameras, ranging from a 70◦ zenith viewing forward through nadir

to 70◦ viewing aft [152]. The time interval between the two most oblique observations is

7 min and the cross-track resolution is 275 m. Accurately co-registering the multi-angle

observations, Horváth and Davies compared directly retrievals of cloud optical depth τ

based on 1D RT [79] calculations for each camera. Their test used a passing rate based

on 5% uncertainty. Figure 23 shows the results of the comparison for clouds with τ > 3.

We see the passing rate increases with pixel size, i.e., clouds behave angularly more and

more like plane-parallel slabs as the resolution is degraded. For a resolution of ≈1 km,

only 20% of water clouds pass the test while at ≈10 km resolution this number increases

to 35%.

For the above-mentioined MODIS instrument, which is onboard of both Terra and
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Figure 23. Angular test for cloud “1Dness.” Passing rate for Horváth and Davies’

angular filter for 3D RT contamination is plotted as a function of pixel resolution.

Clouds with (apparent) τ > 3 were used. The tolerance for τ retrieval error was set to

±5%. Reproduced from Ref. [151].

Figure 24. Asymmetry of cloud optical depth retrievals between illuminated and

shadowed pixels. Each point represents average optical depth in a 50×50 km2 area.

In order to reduce statistical uncertainties, only areas with cloud fractions larger than

10% were examined. Left: θ0 = 30◦. Right: θ0 = 65◦.

Aqua platforms, Várnai and Marshak [153] used another criterion to study the effect

of cloud inhomogeneity on optical depth retrievals. In contrast with MISR, MODIS

takes measurements from a single viewing direction but at 36 wavelengths between 0.4

and 14 µm, with a spatial resolution of either 250 m, 500 m, or 1 km, depending on

the wavelength.∗ MODIS operationally retrieves cloud optical depth τ and effective

particle size re using the two-wavelength 1D Nakajima–King algorithm [154] (see next

subsection). To quantify 3D RT effects, one can see that illuminated cloud pixels will

∗ Resolution degrades as λ increases, largely to keep the SNR at an acceptable level across the spectrum.
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appear systematically thicker than the shadowed ones, Várnai and Marshak combined

MODIS’ VIS and TIR images at 1 km resolution. Capitalizing on the strong thermal

stratification of the atmosphere, TIR radiance variations can be used to retrieve cloud

top height, from there normals are computed, followed by the pixel-scale solar incidence

angle. The observed asymmetry between the illuminated and shadowy pixels was then

used as a measure of the deviation of cloud structure from the assumption of plane

parallel geometry. Figure 24 illustrates the asymmetry for two SZAs: 30◦ and 65◦.

Each point here represents a separate 50×50 km2 area. These panels show that 3D

effects are much stronger for oblique illumination and thicker clouds. Based on 3D RT

calculations for simple stochastic cloud models, Várnai and Marshak [155] suggested

that the mean retrieval uncertainty caused by 3D effects can be parameterized in a

simple linear form as

δτ ≈ τ × (θ0/300◦) , (124)

where θ0 is the SZA expressed in degrees. For example, for oblique illumination of θ0 =

60◦, the relative error is in the order of ±20%.

The first example includes only the (lower) liquid water clouds, while the second

study accounts for all clouds: low and high, ice and liquid, overcast and broken.

However, if the analysis is limited to Sc only, the retrieval errors caused by the 1D

assumptions will be much lower. Indeed, 200–400 m thick marine Sc can cover areas of

1000 km in diameter and are, perhaps, the “most plane-parallel” clouds [103]. As an

example, Zinner and Mayer [156] first simulated 3D fields of marine stratocumulus at

high horizontal resolution, and then used a sophisticated MC model [157] to calculate the

radiation reflected from clouds, as it would have been measured by satellite instruments

with different resolutions. Then they compared the results of 1D retrievals with the

known cloud optical depths. They found that for MODIS’ 1 km resolution, the 1D

assumptions of neglecting resolved and unresolved variabilities results in errors within

5-20%, depending on SZA. Recently, Kato and Marshak [158] studied the dependence

of cloud optical depth retrieval errors on solar and viewing geometries. Their marine

Sc fields were generated using an LES-based cloud process model [159] and satellite

measurements were simulated with Evans’ SHDOM model [130]. Based on their

simulations and MODIS viewing and solar geometry, they also concluded that the

average error of cloud optical depth retrieval for marine Sc, at least over northeastern

Pacific, was less than 10%.

6.4.2. Cloud Droplet Size Retrievals. When discussing the retrieval of cloud optical

depth τ in previous section, we implicitly assumed that it is independent of cloud

droplet size, as defined conventionally by re. This assumption is not generally valid

and MODIS in fact retrieves the pair {τ, re} from two-band combinations [154]: one

liquid water absorption band (1.6, 2.1, or 3.7 µm) and one nonabsorbing band (0.65,

0.86, or 1.2 µm) [160], recalling from §2.2 that σa ∼ re to a first approximation. The

choice of nonabsorbing band depends on the underlying surface. Since water absorbs



3D Transport of Solar Radiation in Clouds 75

differently in the three MODIS absorbing bands, use of the less absorbing (1.6 µm) band

and the more absorbing (3.7 µm) band complement use of the 2.1 µm band. Recall from

diffusion theory in the presence of weak absorption (§3.1.5) that the reflected radiance

comes from a layer of thickness Ld ∼ (σaσt)
−1/2 in (73), which will necessarily be . H

if absorption matters. The trio of absorbing channels with different values of σa(re)

coarsely probes the vertical variation of droplet size in the upper portions of the cloud

[161, 162].

The operational MODIS algorithm provides retrieval uncertainties for both τ and

re for each cloudy pixel. This uncertainty is derived from the sensitivity of τ and re to

plane-parallel homogeneous cloud top reflectance, quantified using partial derivatives of

τ and re with respect to reflectance in both water-absorbing and non-absorbing bands

[163]. The considered sources of uncertainties are calibration, atmospheric corrections,

and surface albedo. In this subsection, we discuss the uncertainty in retrievals of re

caused by unaccounted 3D cloud structure, both resolved (at scales larger than a pixel)

and unresolved (at a subpixel scaled).

The effect of unresolved variability follows directly from the highly nonlinear

relationship between reflectance and effective radius re, through the single-scattering co-

albedo 1−̟0 = σa/σ. That relationship is monotonic (a good thing for remote sensing)

and decreasing and convex function [164]; to see this, we can think of R(∞) = 1−A(∞)

in (75) as a rough approximation of how reflectivity depends on 1−̟0 ∝ re at finite τ .

Because of the strong convexity, the ICA-type average of sub-pixel reflectances will be

smaller than the pixel average of the effective radii. In other words, ignoring sub-pixel

variability of re always results in a retrieval that underestimate the true pixel-averaged

value. The stronger the nonlinearity in the relationship, the larger the underestimation.

In comparison to the effect of unresolved variability on the retrievals of re, the

radiative effect of resolved pixel-to-pixel variability is not so straightforward. However,

under some general assumptions (reasonable for large enough τ and re, say, τ > 10 and

re > 5 µm), Marshak et al. [164] found that pixel adjacency effects will always increase

the domain-averaged retrieved re with respect to the value that would be retrieved in

a uniform plane-parallel surrounding. In other words, ignoring the resolved variability

leads to an overestimation of the domain-average droplet size. Note that this is opposite

to the negative bias from sub-pixel variability.

We illustrate here the retrieval of re using a cumulus cloud field generated with

an LES model [159]. The cloud field consists of 100×100×36 cells with grid sizes

66.7×66.7×40 m3, respectively. Figure 25a shows optical thickness while Fig. 25b

shows cloud top height. For simplicity, cloud droplet scattering has been described

by a Mie phase function for constant re = 10 µm; in comparison with the absorption

coefficient, this scattering property (like g) varies little with re anyway. For a SZA of

60◦, with illumination from the north (top of images) and a surface albedo α of 0.2,

nadir radiance fields at the non-absorbing (0.67 µm) and water-absorbing (2.13 µm)

wavelengths calculated with a MC code are shown in Figs. 25c and 25d, respectively.

We now assume that τ and re are unknown. Then they can be inferred for
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Figure 25. 3D RT effects in cloud droplet size retrievals. (a) Cloud optical thickness

field. (b) Cloud top height above the surface. The cloud is illuminated from the north

with a SZA of 60◦. Droplet scattering is described by a Mie phase function with re

= 10 µm. Surface is assumed to be Lambertian with uniform surface albedo 0.2. (c)

Nadir reflectance fields at 0.67 µm calculated by MC with 5 108 photons. The average

simulation error is less than 2%. (d) Same as in panel (c) but for nadir reflectance at

2.13 µm. (e) re retrieved from reflectances on panels (c) and (d). (f) Same as in (e)

but for reflectances averaged over 25 pixels. From Ref. [164].
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Figure 26. Correlation between retrieved τ and re for illuminated and shadowed areas

in the Cu cloud field in Fig. 25. Radiance was averaged over 2×2 pixels (134 m). The

horizontal dashed line indicates the true re = 10 µm, prescribed uniformly across the

simulated cloud scene. Note that the maximal allowable retrieval value was set to 150

for optical thickness τ and to 30 µm for effective radius re. From Ref. [164].

each cloudy pixel from the pair of reflectances {R0.67, R2.13} using the Nakajima–King

retrieval algorithm [154]. We will focus on the retrieval of re, comparing inferred values

with the predetermined re = 10 µm.

We see in Fig. 25e that about 30% of all cloudy pixels have a saturated value of re

= 30 µm. This is the area where R2.13 is low. Low reflectance at 2.13 µm can result

from either (i) small optical thickness, (ii) large effective radius, (iii) dark surface, (iv)

3D radiative effects, shadowing in particular, or (v) a combination of the above. The

average optical thickness, τ , of pixels with a retrieved value of re = 30 µm is 24, which

is quite large; the true re of those pixels is 10 µm, and the surface is relatively bright

(with α = 0.2). Thus the most likely reason for small R2.13 is shadowing.

The smallest scale in Figs. 25a–e is 67 m. Spatial averaging of the measurements

improves the retrievals. Figure 25f shows the retrieved values of re when both R0.67 and

R2.13 are averaged over 5×5 pixels (335 m) before the retrieval is performed. Indeed, the

number of saturated pixels with respect to re decreased from 30% to 18%, i.e., averaging

dilutes the shadowing, and thus lowers the retrieved value of re.

It is of interest to relate the retrievals of re to the retrievals of optical thickness τ .

We follow Cornet et al. [165] and subdivide all cloudy pixels into two categories based on

their retrieved values of cloud optical thickness. Pixels where the true optical thickness,

τ3D, is larger than the retrieved optical thickness, τ1D, will be called “shadowed” while

pixels with τ1D > τ3D will be called “illuminated” (Fig. 26). As was pointed out by

Cornet et al., the retrieved re in the shadowed regions (τ1D < τ3D) are much larger
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than the ones in the illuminated ones (τ1D > τ3D), as if there was more absorption

[166, 99, 167]. To conclude, overestimation of re corresponds to underestimation of τ .

6.5. Aerosol Optical Depth Retrievals, Near Broken Clouds

Aerosols are very poorly understood actors in the climate system, particularly their

impact on cloud optics [15] and physics [14]. Aerosol optical thickness (AOT) is therefore

a high-value retrieval from satellites because global coverage is necessary to track the

long-range transport and property evolution of the airborne particulates, starting at

their sources. Some are indeed anthropogenic, coming from industrial activity, biomass

burning and all manner of land-use change.

Numerous studies based on satellite observations have reported a positive

correlation between cloud amount and AOT [168, 169, 170, 171, 172]. This positive

correlation can be explained as a result of physical phenomena such as the humidification

of aerosols in the relatively moist cloud environment, or it can result from remote sensing

artifacts such as cloud contamination of the cloud-free fields of view used in the aerosol

retrievals.

There are two ways that clouds affect the retrievals of aerosols [173]: (i) the

existence of small amounts of sub-pixel sized clouds in pixels identified as being cloud-

free and (ii) an enhancement in the illumination of the cloud-free column through the

reflection of sunlight by nearby clouds. When the pixels are relatively large, only the

first type (unresolved variability), cloud contamination is considered. The second type

(resolved variability), also called the “cloud adjacency effect,” is more pronounced when

satellite pixels are relatively small (e.g., ∼0.5 km for MODIS and MISR). Kobayashi

et al. [174], Cahalan et al. [175], Nikolaeva et al. [137] and Wen et al. [176]

studied the cloud adjacency effect when cloud-free pixels are brightened by reflected

light from surrounding clouds using 3D RT calculations. Both cloud contamination and

the cloud adjacency effect may substantially increase reflected radiation and thus lead

to significant overestimates of the AOT. However, these two types of cloud effect have

different impacts on the retrieved AOT:

• sub-pixel clouds increase AOT by increasing the apparent contribution due to large

particles (aerosol “coarse” mode composed of sea salt, dust, etc.);

• cloud adjacency mostly increases the apparent contribution due to small particles

(aerosol “fine” mode composed of smoke, ash, pollution, gas-to-particle conversion

products, etc.).

We illustrate here the effect of cloud adjacency for broken cumulus clouds as

observed by MODIS and ASTER. ASTER views the Earth from nadir direction at

high (15 m) spatial resolution [177]. Figure 27a shows a 68×68 km2 ASTER image of a

region in Brazil taken on Jan. 25, 2003, when biomass burning occured. The 15×15 km2

box in the left lower corner is also zoomed in Fig. 27b. The original 15-m resolution

imagery was aggregated to the 90-m resolution and cloud optical depth τ was retrieved.

Wen et al. [176] then used 3D and 1D RT calculations to determine the “cloud-induced
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(a)

Figure 27. Impact of cloud-induced 3D RT on clear-sky nadir radiances, hence aerosol

retrievals. (a) ASTER image centered at (0◦N, 53.78◦W) acquired on January 25,

2003. Black square in the lower left-hand corner shows the region plotted in panel (b).

(b) Cloud optical depth retrieved from ASTER at 90-m resolution. The cloud cover

is 59%; average cloud optical depth is 14. (c) Enhancement of reflected radiation due

to 3D RT effects for clear regions at 0.47 µm. Cloudy pixels are masked as white. The

mean enhancement δR in (125) is 0.019. From Ref. [176].
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Figure 28. Reflectance measured by MODIS vs. 3D RT simulations assuming constant

AOT. The plot includes those 500 m-size pixels that were used in calculating the 10 km-

resolution operational MODIS aerosol product [180].

enhancement” as the average difference between the 3D and 1D reflectances for all

cloud-free pixels

δR = R3D(x, y) − R1D (125)

Figure 27c shows the cloud-induced enhancement field R3D(x, y) − R1D in clear-sky

regions at 0.47 µm, assuming the same amount of aerosols (AOT = 0.1) for the whole

scene. We see that clouds enhance the reflectance almost everywhere; the average

enhancement δR is 0.019, which corresponds to a 0.1–0.2 increase in AOT. From the

climate-modeling perspective, this enhancement is much too large to be ignored [178].

As shown by Wen et al. [179], 80% of this enhancement is due to cloud-to-molecule

scattering interaction even though the Rayleigh optical thickness at 0.47 µm, 0.186, is

not much larger than the AOT. However, aerosols are forward-peaked scatters, although

less than cloud droplets (with g ≈ 0.7, down from ≈ 0.85). So the broader vertical

distribution of molecules and the lateral illumination geometry from clouds to intra-

cloud regions with substantial view factors of bright illuminated cloud boundaries favor

the near-isotropic scattering of molecules toward space.

Figure 28 demonstrates a striking example of a good correlation between clear-sky

reflectances observed by MODIS and simulated reflectances for the same pixels that

were generated assuming constant aerosol optical thickness throughout the whole scene

plotted in Fig. 27a. The simulated clear-sky reflectance values were obtained through

3D RT calculations that account for the distribution of cloud optical properties retrieved

from MODIS and ASTER radiances. The correlation between observed and simulated

values indicates that, in reality, higher clear-sky reflectance is not necessarily caused

by larger AOT. It could be a rather by a 3D RT effect of Cu clouds in neighboring

areas. How to unravel real and apparent variations of aerosol quantity and quality in
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the vicinity of clouds remains an open research question in remote sensing physics.

7. Mitigation of 3D Damage to 1D RT Modeling

For the past couple of decades, we have seen increasing effort by atmospheric 3D RT

specialists to bring to the broader community of RT end-users practical ways of making

their modeling more realistic than with the familiar 1D RT they use, often without

questioning its applicability. This is true for applications to radiation energy budget

estimation as well as to cloud, aerosol and surface remote sensing.

7.1. Large-Scale Fluxes for GCMs, Small-Scale Fluxes for LES/CRMs

At first glance, the problem of 3D RT through an atmospheric column populated with

broken and/or multiple cloud layers seems intractable, except maybe with heavy-duty

numerical methods. Depending on what radiative properties are targeted, that first

impression may be quite inaccurate.

7.1.1. The GCM Solar RT Problem. Consider the problem described in §6.2 of

computing solar heating rates (i.e., broadband flux divergence) in large domains such

as GCM grid-cells, ∼100 km on a side. Surely we can start by neglecting radiative

interactions with neighboring regions since the vertical extent of the cloudy layer (10–

15 km) is small by comparison with the horizontal size. Moreover, in mainstream GCMs

only a few pieces of information are provided about the clouds, layer-by-layer: cloud

fraction, mean (maybe variance) cloud optical depth.

This is clearly fertile ground for all three classes of 3D RT techniques that address

unresolved variability overviewed in §5.1: homogenization/effective medium, ICA, and

mean-field approaches. They have all been used with varied degrees of success. However,

we must note that until quite recently it is not clear what means “success.” This

is indeed a situation where we know that doing nothing leads to systematic bias, by

Jensen’s inequality. But burden in CPU cycles is a serious concern, any improvement

must be computationally cost-effective. So this lead to a burst of creativity in the 3D

RT community during the 1990s described briefly in §5.1 and in more depth by Barker

and Davis [98] in a relatively recent survey. In the mid-2000s, the steady progress in

computer hardware performance enabled the emergence of CRMs, leading to MMFs. At

the same time, it made MC the standard approach in 3D RT. So, even though the RT

embedded in CRMs is still 1D (cf. §7.1.2), they deliver 3D cloud structures of immediate

concern in GCMs. CRMs were developed largely for that purpose. Computing vertical

profiles of the domain-average radiative heating rate with MC is now very feasible, and

approximating that outcome is the goal of any new parameterization of RT in GCMs.

There has not been a systematic comparison of the numerous candidate 3D RT

models for unresolved cloud variability based on the above-mentioned testbed provided

by CRMs and MC, not even of one representative from each of the three categories.
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However, a major comparison study of all existing 1D RT models has been performed

[181]. A key player was the Gamma-weighted two-stream approximation (GWTSA)

of Barker, Oreopoulos, and coauthors [105, 106, 107] described in a previous section

to illustrate the ICA. However, a clear winner emerged that generalized GWTSA:

straightforward implementation of the statistical version of the ICA introduced in §5.1.2.

Pincus, Barker and Morcrette in 2003 [182] developed, specifically with GCMs in mind,

the MC Independent Column Approximation (McICA) model: an efficient numerical

method of estimating large-scale boundary fluxes and flux-divergence profiles, hence

radiative heating/cooling rates, that is unbiased with respect to the local ICA standard

used in CRMs. McICA creatively merges the concepts

• of MC, viewed simply as a robust random quadrature method (rather than a

numerical solution of the 3D RT equation), and

• of IPA, appropriately renamed ICA (for independent column approximation) in this

context of radiation energy budget computation, where no pixels exist.

Recall that we target here the domain-average broadband fluxes, hence spatial-

spectral-angular integrals of the radiance field, that matter for the energy budget in a

single grid-cell of a GCM. Since such domains extend for 50–200 km in both horizontal

directions, one can capitalize on the quasi-cancelation of all localized 3D RT features

affecting both reflection and transmission. Ideally, we would like to bring the residual

3D–1D (spatial domain) RT modeling error down to the level already accepted by the

GCM community for the spectral domain. McICA basically pools these inevitable

modeling errors and uses a random quadrature rule for both integrations.

In spite of the MC part of the acronym, there is actually no 3D RT going on here,

beyond the above-mentioned test cases for model performance assessment/comparison.

The statistical version of the ICA is accepted as good enough for the climate modeling

application at hand. However, current GCMs predict at best a fractional cloud

coverage of the horizontal domain for each of many atmospheric layers: Acn for the

nth layer. The most basic optical properties for the cloudy and clear portions are also

predicted. Typically, only the requirements of the most variable parameters of the 2-

stream/diffusion 1D RT model are required: optical depth and single-scattering albedo.

Since, by definition, the ICA makes no attempt at the RT impact of spatial correlations

of cloud structure in the horizontal plane, the only remaining issue is how to distribute

the cloudy portions of the GCM grid-cell vertically. How to place it in layer n, in view

of clouds in neighboring layers n ± 1?

The generally accepted rule is known as the “maximum/random overlap” rule: if

two adjacent layers have non-vanishing Ac, then the cloudy portions are required to

overlap as much as possible; if there is a cloud-free layer between two cloudy ones,

overlap is random. It is not easy to work out the combinatorics underlying this rule

explicitly [181]. So, at the spatial core of the McICA model, is a stochastic sub-column

cloud generator that makes sure this rule is implemented exactly in the limit of many

realizations [183]. The price to pay for the elimination of any intra-ICA modeling
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bias by adopting McICA sampling is of course the numerical noise inherent to the

MC quadrature method. So we have to ask, in the context of GCMs: Is accuracy

more important than precision? In an application where the proper partition of the

energy budget matters a lot, we of course require an accurate (unbiased) answer and,

moreover, experimentation has shown that GCM modeling can assimilate dynamically

a considerable amount of MC integration noise [184].

In summary, McICA has proven to be a very good stop-gap solution in GCM-driven

RT modeling that balances adaptively the error in spectral and spatial integrations.

Over the past few years, the McICA has consequently been adopted by most GCMs [185],

including the majority of those deemed mature enough to be used in the comprehensive

assessments and forecasts of the anthropogenic effects on the climate system published

on a regular basis by the Intergovernemental Panel on Climate Change (IPCC) [11, for

the most recent release].

7.1.2. The LES/CRM Solar RT Problem. What about LES-based cloud process

models and CRMs? And, by extension, what about those “research” GCMs that

incorporate CRMs in each ∼100 km cell? Based on our discussion in §6.2, the associated

ranges of scales (10s of m to a few km for LES, and 1 km to 100 km in CRMs)

are extremely vulnerable to inherently 3D effects, especially in the LES range. If the

dynamical cloud model is used in lieu of the stochastic sub-column cloud generator in

the McICA, little difference is noted in the domain-average fluxes [186]. That is to say

that, as far as the radiative part of the large-scale energy budget is concerned, added

realism in cloud representation has a small impact with in the framework of 1D RT.

The remaining question is the quantitative impact of 3D RT effects not captured by the

ICA on the detailed cloud dynamics, as captured by CRMs. If it has little impact, then

why? The issue cannot be put to rest confidently unless there is sufficient understanding.

If it does, then what can be done about it in a practical way? How does one design

representative case-studies and, since 3D MC will be the almost unavoidable benchmark,

how can we guarantee uniformly accurate heating rates across a large CRM grid?

At the time of writing, these remain open questions. For a broad and deep survey

of the highly desirable class of 3D RT approximation (efficient-yet-accurate-enough)

models that target the detailed spatial distribution of solar heating rates, we refer the

interested reader to Davis and Polonsky’s relatively recent review [110, and citations

therein].

7.2. Cloud Remote Sensing, Corrected for 3D RT Effects

In the previous subsection, we have gone from the GCM issue of unresolved cloud

variability, and its state-of-the-art McICA solution, to the current challenge of 3D

“adjacency” effects of individual cloudy cells in LES models or CRMs. Moving on to

radiances instead of fluxes, and narrow-band spectral sampling rather than broadband

integration, we now address remote-sensing concerns.
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In short, the pixel scale can be too small for 1D RT to be anywhere near realistic,

even if the clouds are stratiform (near-plane-parallel outer geometry). More precisely,

the pixel foot-print is so small that, even if it were internally homogeneous, net horizontal

fluxes coming from denser or more tenuous neighboring pixels will affect observed

radiances at cloud top or cloud base. Can we mitigate local biases caused by radiative

interactions between adjacent small-scale pixels, and thus estimate what a 1D RT

treatment of a real 3D cloud would yield?

Alternatively, can’t we just retroactively make the pixel big enough that we can

ignore these net horizontal fluxes and focus only on the pixel-average vertical transport?

Maybe, but this tactic of avoidance (as opposed to mitigation) leads right back to the

issue of unresolved variability that will then have to be accounted for.

7.2.1. Nonlocal Independent Pixel Approximation (NIPA). We describe here a specific

method proposed as a step toward improved accuracy of cloud property retrievals based

on the business-as-usual procedure involving 1D RT models. We first consider satellite

imagery, and then ground-based time series measurements of zenith radiance where the

notion of a pixel is replaced by a short radiometric exposure to downwelling diffuse

radiation within a narrow FOV instrument.

With their ∼30 m pixels, NASA’s series of Landsat missions, carrying Thematic

Mapper instruments, are by far the most popular assets delivering high-resolution cloud

imagery, high-enough that is affected by significant adjacency effects, cf. §6.3.1. To

the best of our knowledge, the first deliberate attempt to go beyond quantification and

actually attempt to mitigate this inescapable 3D RT effect in clouds was by Marshak et

al. [187] who proposed the “nonlocal IPA” (NIPA).

NIPA is based on the intuitive idea that multiple scattering processes cause an

apparent smoothing of the cloud structure, as observed in the remotely sensed radiance

field [145, 146, 136]. Rather than run a full 3D RT simulation with an expensive MC

code, or even a more efficient grid-based solver such as SHDOM [130], one can simply

apply a low-pass filter (smoothing kernel) to the IPA prediction, the computational

cost of which has already been accepted. This approximate 3D RT method works

well, at least for stratiform clouds under near-normal illumination. At more oblique

illumination, brightening/shadowing effects produce a radiative roughening in the sense

of enhanced amplitudes in Fourier space [188, 189] at scales commensurate with the

amplitude of cloud-top variations (. H) divided by µ0.

We note that what is required here is the Fourier transform P̃ (~k) of the smoothing

kernel P (~ρ) since we wish to perform the convolution product of P and the IPA-derived

radiance field IIPA(~ρ) in the horizontal plane:

INIPA(~ρ) =

∫∫

P (~ρ ′)IIPA(~ρ − ~ρ ′)d~ρ ′, (126)

which becomes a simple product in Fourier space, ĨNIPA(~k) = P̃ (~k)ĨIPA(~k). The Fourier-

space reflected Green functions for pointwise illumination can be put to use here. They

will depend parametrically on H , τ , g and ̟0. Depending on whether local albedo or
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Figure 29. Comparison of simulated reflectivity fields using MC, IPA and NIPA for

a portion of a 1D fractal stratoculmulus cloud. Top: On the l.-h. axis, we read the 1D

horizontal variation in x of the local optical depth τ(x) (lower curve); the vertically

uniform cloud is generated with a 10-step bounded cascade process from Fig. 14 with

τ = 13 and H = 0.3 km (pixel/grid-scale = 12.5 m). The upper curves (r.-h. axis)

in the same panel show the associated fluctuations of albedo R(x), the normalized

up-welling flux in (49) for steady and uniform illumination, using both IPA and MC

schemes; SZA is 22.5◦ and scattering is according to a Deirmendjian C1 phase function

at a red wavelength for simplicity (both water- and land-surface albedoes are negligibly

small). Bottom: The r.-h. axis is the same as in the top panel but for normalized

nadir radiance in (41) rather than hemi-sphericial flux, under the same conditions

of spatially uniform and steady illumination, and the computational NIPA scheme is

added. The lower curves (l.-h. axis) highlights the reduced error with respect to MC

when NIPA is used instead of IPA. Both panels are reproduced from Ref. [116].

nadir radiance is targeted, we could choose a spatial Green function for isotropic (§4.1)

or normal [92] illumination.

Marshak et al. [187] had an even more pragmatic approach. Eschewing normalized

solutions in Fourier space of PDE boundary-value problems, they used a convenient

two-parameter expression like (109) but for ρ instead of τ and averages based on cloud

radiative Green functions (in 〈· · ·〉’s) instead of averages over cloud structural disorder

(indicated with · · ·). The 2D Fourier-Hankel transform of a Gamma-shaped radial Green

function (normalized with the appropriate 2πρ weighting) can be expressed with the
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Euler hypergeometric function:

P̃ (k) = 2F1

(

1 + a

2
,
2 + a

2
, 1;−

( 〈ρ〉k
a + 1

)2
)

. (127)

However, the authors did their proof-of-concept computations with cloud models having

optical depth variability in a single horizontal direction, say, x. The required 1D Fourier

transform of (109), with τ 7→ |x| and division by 2 (to cover the support extended to all

of R), yields a simpler expression:

P̃ (k) =
cos
[

a tan−1( 〈|x|〉k
a

)
]

[

1 +
(

〈|x|〉k
a

)2
]a/2

. (128)

These smoothing kernels act in Fourier space as a particular kind of low-pass filter;

they feature rather gentle power-law cutoffs in k−a at wavenumber k⋆ ≈ 1/〈ρ〉R (2D) or

1/〈|x|〉R (1D).

Power-law tails in P̃ (k) are a natural choice to reconcile the spatial correlations

observed in satellite images of extensive stratocumulus [136] with those observed with

airborne in-situ probes [114] for the same type of cloud system. The latter have scale-

invariant (power-law) internal structure, obviously driven by turbulence; specifically,

one finds extinction (actually, LWC) fluctuations in k−5/3, typically over scales from

∼10s of km down to ∼10s of m. Satellite (nadir-looking) radiances also have this trend,

which follows from the IPA (a nonlinear but monotonic mapping of local τ to local

radiance), but only down to a scale found by numerical simulation to be ≈
√

〈ρ2〉R
[146, 136]. Above the associated cut-off wavenumber, a trend approaching k−3 is found,

which translates to a function at least once differentiable.

This level of smoothness is quite remarkable since the 3D RT equation puts no

constraints on gradients perpendicular to the light beams, which in this situation are

vertical. Noting that the low-pass filtered NIPA radiance goes as k−(5/3+a) as k → ∞
when (127) or (128) are used. This sets a to a value . 4/3. Only slightly smaller values

(a . 1) are required for consistency between the Landsat observations [136] and the

near-field behavior of simulated [146] and directly observed [89] spatial Green functions

for reflected laser light. In short, the anticipated range for a is quite narrow and, in any

event, its precise value is not as important as that of 〈|x|〉 or 〈ρ〉 that determines the

spatial extent of the weighted running average.

Figure 29 illustrates the NIPA procedure for the simple fractal model for variable

stratiform clouds described in Fig. 14. The differences between MC, IPA and NIPA are

easy to see. The upper panel shows, on the one hand, τ(x) for a 2-km portion of the

synthetic fractal cloud that extends to 12.8 km (and is periodically replicated beyond

that). On the other hand, both MC and IPA predictions are plotted for the local albedo:

we see how the IPA responds immediately to the fractal variability while the MC results

are much like a running mean over several pixels. The lower panel shows MC, IPA and

NIPA predictions for the local value of nadir radiance over the same portion of cloud.
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By comparing the two registered panels, we see that the MC radiance field is not as

smooth as its counterpart for albedo, patently because there is no angular integration.

The NIPA computation used the smoothing kernel in (128) with 〈|x|〉 = 0.1 km (8 pixels)

and a = 0.5. Finally, we see how much the prediction error with respect to MC “truth”

is reduced by going from the IPA to the NIPA.

That completes the description of NIPA as a means to improve the realism of the

forward IPA model by introducing scale-specific smoothness. The inverse NIPA consists

in taking actual or synthetic cloud radiances and applying the corresponding roughening

filter to restore the IPA and, from there, perform straightforward retrievals of (say) the

cloud optical depth field. Formally, that amounts to solving (126), viewed as an integral

equation, for IIPA(~ρ) knowing INIPA(~ρ) from observation [190] or 3D RT computation,

as in this demonstration.

In an ideal (infinite-accuracy, noisless) world, one only needs to perform the inverse

FFT of ĨIPA(~k) = ĨNIPA(~k)/P̃ (~k). However, 1/P̃ (~k) is a high-pass filter that will amplify

any noise or small-scale numerical error. This is a classic ill-posed (i.e., numerically

unstable) inverse problem. Marshak et al. [187] demonstrate on “observations” obtained

with a MC code (where the “truth” is known), that careful Tikhonov-type regularization

[191] can be used to estimate IIPA(~ρ) even in the presence of considerable noise from

the MC scheme itself and, from there, obtain reasonable estimates of the local value of

τ from a pre-computed inverse map of τ to nadir radiance from 1D RT.

Lastly, we note that there is no reason why the whole NIPA machinery cannot

be applied to transmitted (zenith-viewed) radiance measured with ground-based NFOV

radiometers. Examples have been discussed in §6.3.2. We recall that such instruments

are inexpensive and easy to maintain a long as absolute radiometric calibration is not

required, as is the case in some interesting applications to come in §8.1.

7.2.2. Other 3D–1D RT Compensation Methodologies. NIPA did not remain for long

a lone attempt at using 3D RT phenomenology to improve cloud remote sensing, be

it in simulation. Neural networks were brought to bear by Faure, Cornet, Isaka,

and coauthors on the problem of forward 3D RT [192, 193] and inverse 3D RT

based on simulated observations [194, 195, 196]. Another statistical approach based

on multivariate regression has also been explored [197]. All these algorithms show

a substantial improvement in retrieval accuracy. However, all of them are still in

“research” mode and much work would have to be done to implement them in an

operational pipeline for retrieving cloud optical depth from satellite measurements on

the fly.

It is commonly believed that the more observations of solar radiation reflected

from clouds into different directions are used, the more accurate the retrieved cloud

properties will be. Evans et al. [198] recently asked themselves if we can do better

with multiple viewing angles, as compared to nadir-only reflectance. They simulated

MISR multi-angular measurements with SHDOM for the large number of cloud fields

generated with an LES model. They then retrieved the mean and standard deviation
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using a neutral network algorithm trained on some of the LES+SHDOM fields and

evaluated on others. They found that for large Sc clouds, multi-angular measurements

decrease the mean optical depth retrieval error by 20–40% (respectively, for 45◦ and

25◦ SZA) while for small Cu clouds the retrieval error decreases only by 14%. These

small improvements for Cu clouds suggest that multiple directions do not necessarily

contribute substantially to more accurate retrievals. However, the statistical retrievals

based on 3D RT, even with only one direction, were shown to be much more accurate

than standard retrievals based on 1D RT.

7.3. Broken Cloud Impacts on Aerosol Property Retrievals

As previously mentioned in (§6.5), cloud-molecular interaction is the dominant

mechanism for cloud-induced enhancement of the reflectance in the cloud-free column,

at least for shorter wavelengths and boundary layer cumulus over dark surface [179].

Here we assume that the enhancement is entirely due to Rayleigh scattering, i.e., the

enhancement comes from the re-illumination of the molecular layer through the reflection

of sunlight by the surrounding clouds. Consider a simple two-layer model with broken

clouds below and a uniform molecular layer above (Fig. 30, top panel). Marshak et al.

[173] recently suggested the cloud enhancement of reflected radiation, δR, be defined as

the difference between the following two radiances: R1 reflected from a broken cloud field

with a scattering Rayleigh layer above it, and R2 reflected from the same broken cloud

field but with the molecules in the upper layer causing extinction, but no scattering. In

other words,

δR = R1 − R2 (129)

where, as in (55),

R1(θ0, θ) = Rm(θ0, θ) + Tm(θ0)
αc(τ, θ0)

1 − αc(τ, θ0)R
(dif)
m

T (dif)
m (θ), (130)

R2(θ0, θ) = Rm(θ0, θ) + Tm(θ0)αc(τ, θ0)T
(dif)
m (θ), (131)

where sub-index ‘m’ stands for molecular while ‘c’ stands for cloud. Rm(θ0, θ) is the

reflectance for the molecular layer with no clouds below (known technically as “planar

albedo”). Cloud-layer reflectance, viewed here as a lower surface, is accordingly denoted,

αc(τ, θ0); it is the critical parameter in this simple model because, in addition to cloud

optical depth τ and SZA θ0, it depends on the broken cloud layer’s geometry. Tm(θ0) is

the transmittance through the molecular layer with direct sunlight incident from above

while T
(dif)
m (θ) is the transmission through the molecular layer for diffuse illumination

from below, into direction θ. Finally, R
(dif)
m is the reflectance of the molecular layer

illuminated by diffuse radiation from below (known technically as “spherical albedo”).

With the sole exception of αc, all the quantities in (129)–(131) are 1D and are calculated

using a standard plane-parallel RT code.

To calculate the cloud reflectance for broken cloudy regions, αc, we can use a one-

layer Poisson model for broken clouds originally proposed by Titov in 1990 [199]. The
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Figure 30. Schematic of the two-layer 3D stochastic model used for cloud

enhancement estimation. Top: Optically thick but broken clouds are below, with

an optically thin Rayleigh scattering layer above. Bottom: Two examples of the

Poisson distribution of broken clouds. These fields both have cloud fraction Ac = 0.30

in a 10×10 km2 area. For a cloud vertical thickness of 1 km, the left panel has cloud

aspect ratio γ = 2, and the right panel has γ = 1. The uniform plane-parallel limit of

the model corresponds to Ac = 1 for any γ, which becomes irrelevant. The two-state

(cloudy/clear) ICA limit is obtained for any 0 < Ac < 1 and γ → ∞, meaning a single

very flat (i.e., plane-parallel) cloud with a weight Ac in the domain-average radiance

and clear sky getting the balance.

main parameters in the model are: (i) cloud fraction, Ac, (ii) average cloud optical

depth τ , which is normally quite large, and (iii) cloud aspect ratio, γ, defined as the

ratio of the cloud’s horizontal to vertical dimensions. One can also think of aerosols

filling the space between the clouds with AOT τa(λ), which is normally quite small.

The lower panel of Fig. 30 shows examples of two broken cloud fields with the same Ac

= 30% and γ = 2 and 1. Output of the stochastic RT model is the azimuthally- and

domain-averaged upward and downward fluxes, with downward fluxes subdivided into

diffuse and direct components.

Note that, out of the three principal input parameters, two (averaged cloud optical

depth, τ , and cloud fraction, Ac) can be determined from the MODIS Cloud Product

suite. The third parameter (cloud aspect ratio γ) is not readily available. Fortunately,

the cloud enhancement is not very sensitive to the aspect ratio, at least for small SZA.

The results of detailed numerical simulations of the enhancement by Wen et al. [176]

were shown to be in relatively good agreement with the simple model by Marshak et al.

[173].
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It is also interesting to note that the ratio of cloud-induced enhancements at two

wavelengths λ1 and λ2 in (129)–(131) is only weakly sensitive to cloud properties (τ

is almost independent of λ) and is therefore determined by the Rayleigh scattering

molecular layer. Indeed,

ℜ(λ1, λ2) =
δR(λ1)

δR(λ2)
= C(λ1, λ2; θ, θ0)

1 − αc(τ, θ0)R
(dif)
mλ2

1 − αc(τ, θ0)R
(dif)
mλ1

(132)

where the R
(dif)
mλ terms are relatively small, and we have defined

C(λ1, λ2; θ, θ0) =
Tmλ1

(θ0)T
(dif)
mλ1

(θ)R
(dif)
mλ1

Tmλ2
(θ0)T

(dif)
mλ2

(θ)R
(dif)
mλ2

. (133)

This means that the ratio of cloud-induced enhancements at two different wavelengths

is essentially independent of cloud properties, and depends only on θ0 and θ; hence can

be pre-calculated.

To mitigate the retrieval errors from the cloud-induced enhancement, Kassianov

and Ovtchinnikov [200] recently proposed to use reflectance ratio to retrieve aerosol

optical depth. Based on (132)–(133), the underlying idea of their method is that the

ratio is less sensitive to 3D cloud effects than reflectances themselves. In other words,

they assumed that

ℜ3D(λ1, λ2) =
R3D(λ1)

R3D(λ2)
=

R1D(λ1) + δR(λ1)

R1D(λ2) + δR(λ2)

≈ R1D(λ1)

R1D(λ2)
= ℜ1D(λ1, λ2) thus (134)

ℜ3D(λ1, λ2) ≈ ℜ1D(λ1, λ2) ≡ ℜ(λ1, λ2). (135)

Their method was tested in a simulated case using two ratios at three wavelengths λ1, λ2

and λ3. These ratios were a function of AOT at given solar and viewing angles, aerosol

model, and the underlying surface. AOT, as a function of wavelength λ, was then

described by a power law, τa(λ) = βλ−α, as in (4); this closes the retrieval problem with

two unknowns (α and β) and two observations, namely, ℜ3D(λ1, λ2) and ℜ3D(λ1, λ3).

8. Exploitation of 3D RT Phenomenology in Remote Sensing

To summarize the two previous Sections, the “3D RT is too complicated and expensive”

argument for keeping operational cloud remote sensing grounded in 1D RT is getting old,

and hopefully will be soon obsolete, as the community gains research-based experience

and institutional computing facilities harness more power. Earth, Clouds, Aerosols,

and Radiation Experiment (EarthCARE) is a future joint EU-Japan mission focused on

clouds and aerosols, the next major Earth observation satellite to be launched by the

European Space Agency (ESA) and instrumented jointly with the Japan Aerospace

Exploration Agency (JAXA). With a planned launch in 2013, EarthCARE is the

planning stages for its suite of retrieval algorithms. This effort, spearheaded by Drs.

H. Barker (Meteorological Service of Canada) and D. Donovan (Koninklijk Nederlands
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Figure 31. Zenith radiance measured by a Cimel sun photometer at Greenbelt, MD,

on May 24, 1999. Four channels 0.44, 0.67, 0.87 and 1.02 µm are used. The measured

radiance has relative (channel-to-channel) calibration and is normalized by the solar

flux at the TOA in the corresponding spectral interval. The ordinate’s “arbitrary

units” are therefore linear for T (abcissa, ẑ) from (42).

Meteorologisch Instituut), will be synergistic across multiple instruments and fully 3D

as far as RT is concerned. The 1D RT paradigm seems to be out, and the new one

embraces 3D RT. We are confident that NASA’s planning will be as forward-looking for

its future Aerosol, Clouds, and ocean Ecosystem (ACE) mission with, at the time of

writing, a recommended launch in the 2015–2020 timeframe.

In this final technical section, we take the final step away from 1D RT and examine

some emerging cloud observation techniques that are inherently 3D, can not even come

to mind in universe limited to 1D RT capability. Some are astonishingly simple, given

the right kind of data.

8.1. Variable Cloudiness Observed from Below, with Zenith Radiance

8.1.1. Spectral Signatures. Figure 31 shows a 22 minute fragment of zenith radiance

measured by a ground-based Cimel multi-channel sun photometer pointed straight

up. Cimel has a narrow field of view of 1.2◦ and four filters at 0.44, 0.67, 0.87 and

1.02 µm that are designed for retrieving aerosol properties in clear sky conditions. In

our example, Cimel measured zenith radiance at 20-second temporal resolution while

in “cloud” mode, i.e., constant zenith viewing (as opposed to a special sky scanning

designed for aerosol property retrievals).

There are three distinct regions in Fig. 31: (from left to right) a single unbroken

cloud, broken clouds, and a clear sky. For clear sky conditions, due to Rayleigh

scattering and optically thicker aerosol at shorter wavelengths, zenith radiance increases

as wavelength decrease from 1.02 to 0.44 µm. By contrast, for cloudy conditions,
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radiances in channel 0.44 and 0.67 µm are almost indistinguishable; this is also true

for channels 0.87 and 1.02 µm. This is a clear indication that, in the presence of

clouds, the spectral contrast in surface albedo (back-reflected from clouds) dominates

over Rayleigh and aerosol effects. In contrast to the small fluctuations typical for clear

and even cloudy skies, broken clouds show sharp changes in radiances around cloud

edges.

More formally, we can distinguish three main cases based on radiative cloud-

vegetation interactions:

(1) Atmosphere dominates. In this case,

I0.44 ≫ I0.67 > I0.87 > I1.02 (136)

and aerosol optical properties can be retrieved.

(2) Vegetated surface and cloud dominates. In this case,

I0.44 ≈ I0.67 < I0.87 ≈ I1.02 (137)

and cloud optical properties can be retrieved, given the surface albedo.

(3) Transition between the first two cases. This scenario is characterized by rapid

changes between the ordering of Iλ from cloudy to clear and back. In this

case, neither aerosol nor cloud properties can be reliably retrieved using only one

wavelength.

By analogy with the well-known Normalized Difference Vegetation Index (NDVI)

[201], Marshak et al. [202] proposed to use the Normalized Difference Cloud Index

(NDCI) defined as a ratio between the difference and the sum of two normalized zenith

radiances measured for two narrow spectral bands in the NIR (0.87 µm) and RED

(0.67 µm) spectral regions,

NDCI =
INIR − IRED

INIR + IRED
(138)

Compared to a two-valued optical depth versus zenith radiance relationship that makes

its retrieval impossible without ancillary information [76], the transmitted NDCI is

a monotonic function with respect to optical depth [202]. Conventional methods of

estimating cloud optical depth from surface fluxes use either broadband [203] or a single

wavelength [204] and are expected to work well only for overcast clouds [205]. In sharp

contrast, the NDCI-based retrieval technique is much less sensitive to cloud structure.

The sensitivity is weak because the NDCI-based method eliminates the part of downward

radiation that did not have interactions with surface; this radiation is the most sensitive

to both illumination conditions and cloud inhomogeneity [202, 206]. As follows from

the relations in (136)–(137), the NDCI will be negative for a clear sky and positive for

an overcast sky. In case of broken clouds, NDCI can take on either positive or negative

values, depending whether there is a cloud in the zenith direction or not.

The first shortcoming of the NDCI-based retrieval technique comes from the

underestimation in 1D RT of zenith radiance for large optical depth in NIR. Indeed, in
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NIR, 1D radiance systematically underestimates 3D radiances for large optical depths.

This has a simple interpretation: for 3D clouds, more radiation is transmitted through;

thus more radiation is reflected back from thick clouds to the surface.

Another shortcoming innate to all spectral-indices-based concepts is that the

spectral information is reduced to one number by an algebraic transformation (e.g.,

Tian et al. [207]). In other words, instead of two spectral values of zenith radiances in

RED and NIR, only one, NDCI, is used. Indeed, each measurement can be depicted as

a point on the RED versus NIR plane, which has two coordinates:

η =
√

I2
RED + I2

NIR (139)

α = tan−1(IRED/INIR) (140)

Both coordinates can depend on the cloud optical depth. However, the NDCI,

NDCI =
1 − tanα

1 + tanα
(141)

is a function of α only and thus cloud optical depth can vary considerably with NDCI

unchanged.

Instead of using a single index like NDCI, Marshak et al. [75] directly utilized

radiance observations on the RED vs. NIR plane (see Fig. 32). Since most vegetated

surfaces are dark at red wavelengths and bright at NIR wavelengths, points above the

diagonal correspond to cloudy situations due to surface-cloud interactions, while points

below the diagonal correspond to clear sky. Since the surface is dark in the RED

region, having the same RED radiances at points A and B indicates that they have

the same values of cloud optical depth, τ . However, they have different radiances in

the NIR region. Clearly, more surface-cloud interactions occur and more photons reach

the ground for point B. This indicates that point B corresponds to a smaller cloud

fraction than point A. This can all be made more quantitative in the method referred

to hereinafter as “REDvsNIR,” which retrieves both optical depth and “effective” cloud

fraction from a point in the RED vs. NIR plane. Note that points A and C in Fig. 32

have the same NDCI but correspond to different values of τ and effective cloud fraction.

Next we briefly discuss the REDvsNIR retrieval method proposed in Marshak

et al. [75] and validated by Chiu et al. [76]. The method retrieves overhead cloud

optical properties in any cloud situation using measurements of zenith radiance at 0.673

and 0.870 µm wavelengths, and only requires the presence of green vegetation in the

surrounding area.

We first note that for plane-parallel clouds over a Lambertian surface, any ground-

based measurement of radiance I can be expressed as

I = I0 + T0
α

1 − αR
Is. (142)

The first term on the right hand side, I0, is downward radiation calculated over a non-

reflecting (black) surface, while the second term is radiation introduced by interactions

between clouds and the underlying surface. The cloud-surface interactions are fully

determined by α, T0, R, and Is, where: α is the albedo of the underlying surface; T0
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Figure 32. Schematic of the REDvsNIR algorithm. See main text for description of

the the method for retrieving cloud optical depth τ and cloud fraction Ac.

is the transmittance of monochromatic flux over a black surface; R is the spherical

albedo of clouds for uniform and isotropic illumination from below; and finally, Is is the

radiance generated at the upper boundary by an isotropic source at the surface.

Consider the following approximation:

T0 ≈ (1 − Ac) × 1 + Ac × T
(pp)
0 , (143)

where Ac is cloud fraction and T
(pp)
0 is total transmittance over a black surface in the

uniform plane-parallel assumption. We can then rewrite (142) as an explicit function of

cloud optical depth τ and Ac. For the RED and NIR regions, we obtain

IRED(τ, Ac) = I0,RED(τ) +
[1 − (1 − T

(pp)
0,RED)Ac]αRED

1 − αREDRRED(τ)
Is,RED(τ)

INIR(τ, Ac) = I0,NIR(τ) +
[1 − (1 − T

(pp)
0,NIR)Ac]αNIR

1 − αNIRRNIR(τ)
Is,NIR(τ) (144)

Note that it was assumed here that the dependency on Ac only comes from (143). This

Ac is not a real cloud fraction, but rather a “radiatively effective” value that forces 3D

measurements to fit into 1D plane-parallel RT calculations. Detailed explanations and

discussions can be found in Marshak et al.’s 2004 paper [75].

8.1.2. Spatial Signatures. Stratiform clouds (St and Sc) may have cloud-top and cloud-

base altitudes that are relatively well-defined, at least over scales of a few times their

thickness H . A plane-parallel slab assumption may therefore be reasonable for their

outer geometry. However, these clouds are generally quite turbulent environments;

so their inner structure is highly variable. Microphysical probes on aircraft have

sampled this spatial variability of LWC, and its wavenumber spectrum indeed follows

the ubiquitous k−5/3 law [89, 208, among others], even though the turbulence is far from

Kologorov’s [209] statistically isotropic and homogeneous model and condensed water
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is far from being a passive scalar. LWP, vertically-integrated LWC, can be measured

from ground-based microwave radiometers (MWR) [117, among others]. Time-series of

LWP, viewed as frozen turbulence advected past the instrument (much like in wind-

tunnel experiments), leads to the same conclusion. In contrast, solar radiation observed

from space or ground follows the turbulence-driven k−5/3 law too, but only down to a

characteristic wavenumber k⋆. At smaller scales (larger k), the spectrum dips to lower

levels of variability. In §6.3, we have shown observations and 3D RT simulations of this

scale break. We were able to explain the scale break by introducing the inherently 3D

RT phenomenon of “radiative smoothing” [146], in essence, an observable manifestation

of the spatial Green function for multiple scattering [136].

So we have, on the one hand, at least an indirect observation of the Green function

and, on the other hand, a reasonable diffusion-based theory of RT Green functions at

least for optically thick clouds. We used this conjunction in §7.2.1 to mitigate the

3D RT effect of radiative smoothing for the purposes of cloud remote sensing in the

conventional sense where an operational 1D RT model is used as a predictor for cloud

radiances. However, there is also here a clear opportunity for a remote-sensing retrieval

of H using simple passive instrumentation.

Indeed, suppose we have a ground-based NFOV radiometer recording zenith

radiance, as did Savigny et al. [149]. Then either Fourier or structure-function analysis

of the time series, yields an empirically-determined characteristic scale r⋆(= 1/k⋆) where

the break occurs in the scaling. This determination does not call for any radiometric

calibration, only a reliably constant gain factor that converts the incoming radiance into

photo-electrons or current. We know from the detailed 3D RT computations shown in

§6.3.2 that

r⋆ ∼ 〈ρ2〉1/2
T . (145)

Finally, we know from diffusion theory that 〈ρ2〉1/2
T ≈

√

2/3H , with small correction

terms if necessary dependent on cloud optical thickness τ and asymmetry factor g (cf.

§4.1), and possibly also the cosine of the SZA µ0. Now, µ0 is known, g ≈ 0.85 for low-

level liquid water clouds, and τ can be inferred independently from passive but calibrated

radiometry (such as described in §3.2). The latter determination is, in essence, based

on the inversion for τ of transmitted flux µ0F0 × T (τ, g; µ0), or of zenith radiance (with

the added but tractable issue of ambiguity). The only remaining question is therefore

about the precise relation to use in (145). Is it a simple proportionality enough and, if

so, does the constant depend on anything we should know about? Computational 3D

RT can answer this question using realistic cloud models.

One might start worrying about a fundamental inconsistency that is building up

here. We detect and quantify a scale-break, which presumes turbulent cloud structure

... and we then invoke results from analytic diffusion theory that are based on a

uniform cloud assumption. What that means of course is that the retrieved H and

τ are “effective” cloud properties: those of the uniform slab that give the observed

values of T (τ, g; µ0) and 〈ρ2〉T (H, τ, g; µ0). Is that good enough? That question will
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depend on the application, but we can be sure that in some cases the biased answers are

not acceptable. That is why we have refined 3D RT theory, even with the framework of

diffusion. We have models for estimating the impact of unresolved small-scale variability

that the measurements have basically averaged over. In fact three different types of

model were discussed in §5.1. They may have been designed with the radiation budget

of ∼100 km GCM grid-cells in mind, but there is no fundamental reason why they

cannot be applied, with proper thought, to unresolved spatial variability in remote

sensing observations. Again, particularly attractive here are homogenization techniques

such as Cairns’ renormalization (cf. §5.1.1).

So, looking up from the ground at stratiform clouds, we can tell their thickness using

3D RT phenomenology and relatively simple instrumentation. What about looking down

from aircraft or space? The opportunity for remote passive determination of H remains

just as good, with one caveat. Since we have

〈ρ2〉1/2
R ∝ H/

√

(1 − g)τ , (146)

from §4.1, we will definitely need to know τ—and not just for correction terms. So we

will have to use an instrument with absolute radiometric calibration (or a collocated one,

possibly with coarser resolution). Moreover, the prefactor in (146) will likely depend on

µ0, as is the case for temporal Green function moments [92], and there will a notable

(x, y) anisotropy if µ0 is significantly < 1. The role for computational 3D RT is still

there to refine the connection between r⋆ 2 and some combination of 〈x2〉1/2
R and 〈y2〉1/2

R .

Another fundamental concern arises at this point. Solar 1D RT in clouds is not

sensitive to vertical variations in extinction σ(z) as long as other optical properties are

not dependent on altitude. Indeed, the natural independent variable in the 1D RT

equation is τ(z) =
∫ z

0
σ(z′)dz′. So, beyond the key position of the source, R and T

(spatially-integrated Green functions) do not depend on what side is up or down if ̟0

and g are constant. This cannot be true of 〈ρ2〉R, a measure of horizontal transport

from the source position to the observation point, if the cloud is actually denser at its

top than at its base. And that is indeed what we learn from elementary cloud physics,

a.k.a. “parcel theory” [210]: moist air, and CCN, rising in an adiabatic environment.

For the natural assumption of a fixed number of CCN, hence cloud droplets, adiabatic

growth predicts a linear trend in LWC(z) where is is 0 at zbase and maximal at ztop.

This leads to a power-law for σ(z) in |z − zbase|2/3.

Diffusion theory, based on (29), for a (pulsed) point-wise boundary source remains

tractable for D(z) = 1/(1 − g)σ(z) with a power-law trend D(z) ∝ |z − zbase|−ζ , with

0 ≤ ζ ≤ 1. However, the solution has less complicated expressions for a constant-

gradient model

σ(z) = σ ×
[

1 +
∆

H

(

z − zbase + ztop

2

)]

, (147)

with 0 ≤ |∆| ≤ 2. The case of ∆ < 0 corresponds to observation and source points

above the cloud, which applies to passive solar measurements, while the ∆ > 0 scenario
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Figure 33. Effects of cloud stratification on moments of Green functions. Top:

Reflected light, in semi-log axes, where diffusion predictions for the prescribed cloud

(τt = 8.1) are in solid lines while the MC validation data are plotted with bold symbols;

note the presence of a logarithmic singularity in 〈ρ2〉R at ∆ = +2. Bottom: Same as

above but for transmitted light for the same clouds; note the nearly flat behavior of

〈ρ2〉T away from |∆| = 0 and up to the onset of the logarithmic singularity at |∆| = 2.

Both panels are reproduced from Ref. [92].
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corresponds to observation and source below (cf. §8.3.3 for an application). Moreover,

a straightforward least-squares minimization maps ζ to [92]

∆(ζ) = ±6 ×
[

2

(

ζ + 1

ζ + 2

)

− 1

]

, (148)

hence ζ = 2/3 to ∆(2/3) = −3/2 in the solar case. MC simulations by Davis et al. [92]

show that, for all Green function moments of interest here, the difference between using

the power-law model or the linear model using ∆(ζ) is negligible.

The two panels in Fig. 33 show three key Green function moments (two in time,

one in space), all normalized to H , as functions of ∆ for reflected and transmitted

light; (1 − g)τ is set at 8.1. Continuously varying diffusion-theoretical predictions are

compared to sparse but representative MC validation data. Focusing on the spatial

statistic (RMS ρ) in transmission geometry (bottom panel), the diffusion model has

singular behavior when |∆| → 2− (σ vanishes at cloud base). Maybe worse is that the

correction for stratification has the wrong sign for this particular value of τ ; this is not

the case at larger τ and a parameterization based on that regime can be used [92]. The

effect is 2nd-order in |∆| anyway. In reflection (top panel), the effect of ∆ is 1st-order

and there is no singularity in the solar observation geometry (∆ < 0). Here again, Davis

et al. propose an accurate parameterization (based on logarithmic derivatives in ∆ at

∆ = 0), at least for the RMS ρ and mean ct (used further on).

We have now taken care of all the most important structural and optical properties

of a Sc cloud in the forward diffusion-based RT model for RMS ρ, hence the direct

observable r⋆. Yet there remains one main obstacle for implementation of the above

algorithm for a passive determination of H from above, given τ . It is the need for

Landsat- or ASTER-like pixel sizes in the 10s of meters since radiatively-smoothed

scales need to be resolved. Earth observation satellites that target global coverage do

not have this level of spatial resolution since they require wider swaths. Nonetheless,

there may some day be swarms of high-altitude unmanned airborne vehicles (UAVs), or

ballons, that will deliver the required resolution.

In the meantime, it is important to promote multi-pixel approaches, like the above

procedure, in the physics-based remote sensing community at large (beyond just clouds).

The industry has indeed been dominated since its inception by single-pixel methods

predicated on the assumptions that (1) all the desirable information is somehow encoded

in the multi- or hyper-spectral dimension of the data, and (2) that there are too many

pixels coming down the pipeline to start processing more than one at a time. The

previous subsection is one more proof that there is indeed vast amounts of cloud, aerosol

and surface information still to mine for in spectral data. However, it is time to challenge

that preconception, just because it limits our horizon unecessarily.

We return to the passive determination of the important properties of dense

stratiform clouds {τ, H} in §8.3.2 taking, curiously, a time-domain Green function

perspective. The same endeavor, but with active remote sensing technology, is pursued

in §8.3.3.
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Figure 34. Remote observation geometry for a finite isolated spheroidal cloud.

8.2. Cloud-Sensing Sideways

8.2.1. Horizontally Finite Clouds, in Isolation. In §3.3, we obtained a closed form

expression for the total reflectivity R and transmittivity T of a uniform spherical

cloud defined respectively as the boundary fluxes through the illuminated and shaded

hemispheres, normalized to the incoming solar flux, in the absence of absorption. In

that case, R + T = 1, by conservation, and nontrivial result obtained from diffusion

theory by Davis [86] is that R/T is given by (1−g)τ/2χ where τ = 2σrc is the diameter

of the sphere in optical units. In fact, noting that the same can be said of the all too

familiar plane-parallel slab clouds if one takes τ = σH, it is speculated that the result

is true for any oblate spheroidal cloud illuminated along its shortest axis. From there,

it is probable that many other shapes of uniform diffusive clouds have the same optical

property,

R/T ∝ (1 − g)τ, (149)

if we continue (1) to partition R and T according to illumination and (2) to define τ

based on a linear measure of the outer size of the cloud.

This opens an opportunity for truly 3D cloud remote sensing with, to boot, no

need for absolute radiometric calibration. Indeed, it is topologically impossible to have

in the same image both reflected and transmitted light if the cloud is a horizontally

infinite plane-parallel slab. In sharp contrast, most vantage points give a view of both

the illuminated and shaded sides of an arbitrary ellipsoid illuminated along its shortest

axis, as illustrated in the schematic in Fig. 34. This does not give us R/T as defined

rigorously above in terms of boundary fluxes, but we can make an estimate based on

radiances measures at some stand-off distance. As previously mentioned, to go from a

radiance I to a flux F , we need an angular model. Opaque, highly reflective clouds are

not far from being Lambertian (isotropic) reflectors, so we can surmise that F = πI.

As for the unit sphere that defines direction space, the physical space that defines

the spherical cloud boundary has to be just sampled to estimate integrals over entire
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Figure 35. “True-color” channel combination of an MTI scene of Los Alamos (NM)

in the presence of broken clouds. This is a look from 57.4◦degree off-nadir in the aft

direction, i.e., from a position to the North of the target. Local SZA was 54◦ and ≈175◦

away from the viewing direction in azimuth. The positions of three pairs of cloudy

regions that were used to compile radiance statistics are highlighted. Cloud-to-cloud

and cloud-to-ground radiative interactions are neglected in the retrievals.

hemispheres. This is relatively easy if there is sufficient spatial resolution to find distinct

pixels that are representative of R and of T , and preferably several of each. Assume

now that these pixels have radiances IR = I(xR,Ωobs) and IT = I(xT ,Ωobs) respectively,

and that the response of the imaging detector is flat across the whole field of pixels—

a statement about relative calibration. Then we have built a case for using IR/IT to

estimate R/T that in turn can be used to estimate τ based on (1) our confidence in

g’s quasi-invariance in warm clouds and (2) knowledge of the proportionality factor in

(149). Said proportionality constant, and possibly higher-order correction terms, can be

derived from theory or computation. Note that we do not need to target the outer cloud

size, 2rc, because here, unlike H for slab-clouds, it is obtainable by direct mensuration

of the image.

Figure 35 shows how the above algorithm was applied to hand-picked clouds in

a very broken Cu cloud field above Los Alamos, NM, USA (35.875◦N, 106.3245◦W),
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collected on September 22, 2000, at 19:05 UTC. The data was captured by the

Multispectral Thermal Imager (MTI) satellite [211] from a viewing direction of ≈60◦

off-nadir. MTI was a mission sponsored by the US Department of Energy (DOE) as

a technology demonstration in dual-purpose observation, part for nuclear proliferation

detection, part for environmental science. The only important things to know about

MTI here are (1) that its 14 spectral channels included VNIR wavelengths where there

is no absorption by droplets or gases, and (2) that its spatial resolution of was 5 m at

VIS and one NIR wavelengths, otherwise 20 m.

Three clouds were picked to cover the range of outer sizes, then small patches of

pixels in the easily identified sunny and shady portions of each cloud were hand-selected

and the mean radiances, as well as their standard deviations, were computed and used

as the inputs IR and IT . The proportionality constant for the sphere, 1/2χ ≈ 3/4, was

used for simplicity in (149) to derive estimates of τ , assuming of course g = 0.85. The

“big,” “medium” and “small” clouds yielded effective τ -values of 45±11, 43±10 and

26±7 respectively. These numbers are realistic for such clouds.

As in the prototype algorithm presented in §8.1.2 to obtain H for stratiform clouds,

the above algorithm to obtain τ for cumuliform clouds is monochromatic but multi-pixel.

So it serves as a second counterpoint to the mono-pixel but multi-spectral theme used

in mainstream remote sensing of clouds, aerosols, surfaces, etc. As it stands, it has the

same obstacle for implementation: the need for unusually high-resolution imaging that

is generally precluded by the need for global coverage. Again, there may be some day

swarms of suborbital platforms with inexpensive non-calibrated sensors that can still

be used to support physics-based remote sensing of the environment using the kind of

technique presented here.

8.2.2. Horizontally Finite Clouds, with Microphysical Stratification. What if one could

measure the vertical profiles of the cloud microphysical properties by retrieving them

from the solar radiation reflected directly from cloud sides? As we mentioned earlier, all

existing operational retrieval algorithms are based on the plane-parallel approximation

that does not take into account the cloud horizontal’s structure. In terms of cloud aspect

ratio, γ = L/H , where L and H are horizontal and vertical dimensions of the clouds,

respectively, the main plane-parallel assumption used for any remote sensing retrieval is

that γ is very large (cf. Fig. 30). In that case, the satellite always sees either the cloud

top or the clear sky and hardly ever a mix of both, even if the global and most regional

cloud fractions are finite. From there, using the 1D Nakajima–King algorithm [154], a

pair of reflectances at non-absorbing and droplet-absorbing bands indicates both how

optically thick the clouds are (by estimating τ) and how much condensed water they

contain from (68): CWP ≈ (2/3)ρwreτ (by estimating re).

For cloud-side remote sensing in the solar spectrum, Marshak et al. [212] and

Martins et al. [213] suggested using the same two wavelengths: one non-absorbing

(0.67 µm) and one with strong absorption by liquid water (2.1 µm). In contrast

to the 1D plane-parallel approximation, 3D RT is used for interpreting the observed
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Figure 36. Reflectance from a single cloud with a variable droplet effective radius.

Cloud height 4 km, cloud width 6.5 km, flat cloud top, τ = 80, SZA = 60◦, VZA = 45◦

with the Sun in the back of the sensor. Droplet effective radius re increases linearly

with height from 5 to 25 µm. Cloud edge is at x = 7.5 km. Reflectance from cloud top

is at the right side from the cloud edge while reflectance from cloud side is at the left.

Dots indicate “measurements” sampled at 0.25 km resolution. Top: λ = 0.67 µm.

Bottom: λ = 2.1 µm.

reflectances. As a proof-of-concept that the signature of the “true” effective particle size

is detectable in the observable reflectances at λ = 0.67 and 2.1 µm in a statistical sense,

these authors experimented on a few examples of simulated radiance fields reflected

from cloud fields generated by a simple stochastic cloud model with vertically-resolved

microphysics prescribed.

Figure 36 shows an example of reflectances from cloud side and cloud top for two

wavelengths: 0.67 and 2.1 µm calculated with SHDOM [130]. The droplet effective

radius re increases linearly with height from 5 µm (at the cloud base) to 25 µm (at

the cloud top). Cloud geometrical thickness H = 4 km and cloud optical thickness

is τ = 80 (thus extinction coefficient is 20 km−1). With horizontal resolution δx =

0.25 km and viewing zeith angle (VZA) θ = 45◦, there are H × tan θ/δx = 16 cloud side

“measurements.” We see that, under relatively low solar illumination (60◦ SZA), I0.67
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Figure 37. Feasibility of remote determination of effective droplet radius along the

sides of convective clouds (a) True (i.e., prescribed) effective radius for droplets (blue)

and ice particles (red). Smallest droplet radii are at the bottom of the cloud cells,

largest droplets around 15 µm are at the top of the liquid water volume just below

the largest ice effective radius values (re = 60 µm). The color scale for re is “painted”

onto a 3D isosurface of constant CWC that defines cloud boundaries. (b) Observed

reflectance values for λ = 0.87 and 2.1 µm for certain true re ranges (droplets only).

SZA = 45◦, VZA = 60◦ with the Sun in the back of the sensor. The inserted histogram

illustrates the underlying true re distribution.

reaches its maximum near cloud top (which is at x = 7.5 km) where most of the photons

are already reflected back from the cloud side without either transmission through the

cloud and escape from cloud base, nor reflection from cloud top. The horizontal size

L of this cloud is only 6.5 km and, with the extinction coefficient 20 km−1, γ ≈ 1.6

is not sufficiently large to reach a stable 1D plane-parallel regime at cloud top. As a

result, I0.67 decreases steadily from the illuminated cloud edge to the shadowed one. In

contrast, I2.10 has a flat plateau, 5 km across, where the 3D reflectance perfectly matches

the 1D one. Because of increasing droplet sizes with height, the maximum is reached

much lower than in case of conservative scattering. It is around 1 km from cloud base

where re = 9–11 µm. With farther increase of re, reflectance I2.10 drops fast and reaches

a flat 1D level already at the cloud top (re = 25 µm) about 1 km from the cloud edge.

To account for the complex 3D nature of cloud geometry and ensuing RT, Zinner et

al. [214] recently tested the approach in realistic cloud-observing situations. They used

a cloud resolving model [215] to provide complex 3D structures of ice, water, and mixed-

phase clouds, from the early stage of convective development to mature deep convection.

A 3D MC-based RT model was used to realistically simulate the proposed observations.

A large number of cloud data sets and corresponding simulated observations provided

a large database for an experimental Bayesian retrieval.

As an example, Fig. 37 shows a simulated cloud field and calculated reflectances.

Left panel shows the “truth,” i.e., the value of re that is visible for the given observational

perspective in the cloud structure. Due to the complexity of 3D cloud structure and
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3D RT a wide range of possible reflectance values at 0.87 and 2.1 µm occurs for each

value of re (right panel, with droplets only). This differs clearly from the classical

picture of 1D RT through plane-parallel clouds where a clear deterministic one-to-one

map exists between a pair of VIS and NIR reflectances {I0.87, I2.10} a one pair of cloud

optical thickness and droplet effective radius values {τ, re}, for given surface, viewing,

and illumination conditions [154, 160]. In spite of blurring the separation by re, the core

information of droplet size is still visible in the reflectance picture. For example, there is

clear evidence that smaller near-IR reflectance are related to larger cloud particle size.

To demonstrate the capabilities of the experimental Bayesian retrievals, Zinner et al.

[214] used an independent simulation of an additional cloud field as a synthetic testbed.

8.3. Direct Observation of Green Functions in Time and/or Space

The spatial Green function of clouds for multiple scattering, generally without droplet

absorption, has been used extensively already. It was used to assess 3D RT effects (e.g.,

in the Landsat scale-break), to mitigate them (e.g., using NIPA) and was even exploited,

albeit indirectly, to estimate cloud thickness form passive solar observations using 3D

RT phenomenology (see §8.1.2). This is quite remarkable for a mathematical construct

based in fact on RT in a uniform plane-parallel cloud. Its 3D RT information content

comes entirely from the concentration of the source to a single point in space.

We now ask: What if we could observed the cloud’s Green function directly?

Moreover, let us broaden our scope from the steady-state problem and the spatial Green

function to its temporal and space-time counterparts.

8.3.1. Pathlength Statistics 1, Space-Based Wide-FOV Lidar. We start with purely

temporal Green functions excited by a uniformly distributed pulse of light. We would

gladly observe this Green function using time-sampled radiometry, if such a physical

source exists. Approximations do. Imagine a normally diverging laser pulse (say, 1.2

mrad) impinging on a cloud from a transmitter at a very large stand-off distance. Also

imagine that the reciever FOV is somewhat larger, as for a standard ground-based lidar

systems, but maybe more (say, 3.5 mrad). That was precisely one of the configurations

used by the first lidar system brought to low-earth orbit (LEO), and back, on the

Space Shuttle (STS-64) for the Lidar-In-space Technology Experiment (LITE) mission

at ≈260 km altitude on September 9–20, 1994 [216]. More precisely, that wider FOV was

used on the nighttime side (no solar background noise) of orbit #135, which overflew an

extensive marine Sc deck off the coast of Southern California. The transmitter produced

0.5 J pulses at 532 nm (frequency-doubled Nd:YAC solid state laser) with a 10 Hz rep-

rate, and the receiver had a 1-m diameter telescope. It was a rather hefty instrument,

but it was the first to go to space and operate according to specs.

The effective diameter of LITE’s laser beam was ≈0.3 km at cloud top, and the

footprint for its FOV ≈0.9 km. So the detected light could have been transported

horizontally anywhere between 0 to 1.2 km, with all the available light transported less
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Figure 38. Four non-saturated LITE pulses returned from an optically thick marine

Sc deck. Time-dependent reflected radiance R(t) is plotted in arbitrary (engineering)

units as a function of altitude of the apparent echo (upper axis) and path inside

the cloud (lower axis), respectively, the interpretations applicable to the conventional

single-backscattering model for the lidar signal and to the new multiple-scattering

model that is favored here.

than 0.6 km within the FOV. The targeted marine boundary-layer clouds have H in

the range 0.2–0.5 km. Optical depth τ is in the range 4–40, hence 0.6 . (1 − g)τ . 6

(typically with a skewed, log-normal-type distribution), and it tends to correlate loosely

with H (H ∼ τ 2/3) [217]. Using typical values, H = 0.3 km, τ = 13, (94) then gives the

RMS spread of the spatial Green function as ≈0.3 km, and it can be expected to go up

or down by a factor of 3±1/6 ≈ 1.2 on average. So we can confidently say that LITE has

captured most of the multiply-scattered laser light coming its way.

Among the 1000s of pulses returned from this 13-min segment, 4 were particularly

interesting because they were in close proximity and not saturated at their peak

values. They are shown in Fig. 38. The point at which the optical “echo” appears

to come below sea-level is indicated, and this makes the pulse stretching by multiple

scattering particularly evident. From these signals the background (in this case, shot and

electronic) noise can be determined visually and the excess used to estimate temporal

moments, 〈ct〉R and 〈(ct)2〉R. From there, one can use (95)–(96), but as recently refined

in Ref. [91] for collimated beam effects, to infer both H and τ . The outcome is τ ≈ 17

and H ≈ 0.28 km, which is not unreasonable in view of the marine Sc climatology

briefly described above. An independent refinement for stratification effects by Davis et

al. [218], possibly over-compensating, leads to τ ≈ 11 and H ≈ 0.4 km, which is still

well within the climatology.

Other methods of analysis based on explicit expressions for the time-domain signal

concur with these numbers [50], and could be used in the presence of saturated portions
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because the range of time-bins used in the retrieval can be varied by the user. To

illustrate with a consistency check, we can use the effective {H, τ} pair obtained here

for the uniform cloud assumption in (87). Assuming χ = 2/3 for simplicity, this predicts

the ct⋆ to be ≈0.50 km. The observed value in Fig. 38 is ≈0.54 km, and the 7% difference

is well within experimental error.

8.3.2. Pathlength Statistics 2, High-Resolution O2 A-Band Spectroscopy. To study and

exploit temporal statistics, one does not need to obtain time-domain data, if Laplace-

domain data is available. In the case of multiple scattering in the cloudy atmosphere,

there happens to be an emerging observational technology that gives us access to

Laplace-space data. It is high-resolution differential absorption spectroscopy in the “A-

band” of oxygen at 759–771 nm, which was mentioned briefly in §2.1. The lower panel

of Fig. 2 for O2 optical depth κν × H across a typical low-level stratus cloud layer and

synthetic spectra. For the instrumentalist’s convenience, it sits roughly at the maximum

of the solar spectrum when expressed in photons/s/m2. The important property of O2

used here is that, being a dominant component of air, its density n is known everywhere

with high accuracy. We also know its optical absorption cross-section ξa(ν) very well as

function of wavenumber ν, given pressure and temperature (i.e., altitude). So, we know

its absorption coefficient κν = n × ξa(ν) as a function of ν, and it varies over several

orders of magnitude (cf. Fig. 2). Therefore, for a known path L and a known source

of broadband radiance I(0), we are able to predict directly transmitted radiance from

Beer’s law:

Iν(L) = I(0) exp(−κνL). (150)

This is the simple forward model for gaseous absorption spectroscopy, O2 or whatever,

at high-enough resolution that we do not need to convolve the spectral variations with a

“slit” function. In practice, that is never quite true; the point here is that we will need

this high-enough resolution to justify the use of Beer’s law of exponential transmission.

In differential absorption spectroscopy, we focus on the direct transmittance factor

Tdir(ν, L) = Iν(L)/I(0), where I(0) can be determined empirically by seeking a

wavelength with no absorption, preferably near the absorption band to avoid questions

about spectral invariance.

Normally in differential absorption spectroscopy, one does not know everything.

Unforeseen spectral features can be used to detect and identify unknown molecules in

the path. The strength of the spectral lines can be used to estimate the density of a

molecular species with a known cross-section. In the present case of multiple-scattering

in clouds, we know everything about the molecules but not the path L(≡ ct) per se,

because it is in fact a random variable. Consequently, if we know G(ct, x,Ω), the

temporal Green function for the uniform boundary source of interest in solar radiation

from (3+1)D RT at the A-band wavelength but only for scattering/reflection processes,
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then the forward model in (150) becomes

Iν(x,Ω) =

∞
∫

0

G(ct, x,Ω)e−κνctdct, (151)

which is sometimes called the “equivalence” theorem [219, 220]. Note that, apart from

again forgetting the slit-function convolution, we have not yet decided what kinds of

spatial and angular integrations we will use, if any. If we do not know the Green

function, it isn’t too serious if nature gives the left-hand side of (151) from measurements

and we are only interested in temporal moments, as defined in (89)–(90). Indeed, we

can recognize in the equivalence theorem, the temporal part of the Fourier–Laplace

transform in (81) but where κνc plays the role of s. This enables us to use the recipe in

(92) to obtain successive moments of t, hence ct.

So we end up in this paradoxical situation where two radically different kinds of

instrument: one active and monochromatic, and the other passive and hyperspectral

(many contiguous spectral bands). Each of these has a host of technological

idiosyncrasies, enough that each belongs to a different observational community. Yet

they can deliver the same primary products, namely, 〈(ct)q〉R (q = 1, 2 and possibly

more). Having obtained from an O2 A-band spectrum at least the first two moments of

path length, we can perform the same cloud property retrievals as demonstrated above

with LITE data. Thus, {H, τ} would be the final (“level 2”) product.

If, for any reason, we prefer not to estimate the moments explicitly, we still have a

compelling moment-based argument that there is enough cloud information content

in Iν(x,Ω) to perform the same remote sensing task. One way to do that is to

fit the spectroscopic data, re-ordered by value of κνc, which gives a monotonically

decreasing function. The nonlinear model could be one or another of the analytic

expressions for R̃(s) from Sections 3–4, or from elsewhere since the effects of oblique

collimated illumination have recently been incorporated [91]. The optimal choice of

cloud parameters is then found by fixing χ (or µ0) and g, and varying the pair in {H, τ}
to fit the data.

All of this is for reflected light of course, which means that the A-band instrument

must be above the clouds, either on an aircraft or a satellite. There is a long and

venerable line of theoretical and observational studies, many done in the Former

Soviet Union, on A-band spectroscopy from above ground that, incidentally, has other

applications than cloud remote sensing. This literature is surveyed in great detail by

Davis et al. in a recent review paper [92]. Spectrometers that happen to cover the

A-band or are custom-built for it have thus been flown for a long time, both suborbital

and in space. However, only now are we achieving the spectral resolving power we need

to fully benefit from this opportunity in cloud remote sensing. We were looking forward

to the cloudy pixel data from the imaging A-band spectrometer on the Orbiting Carbon

Observatory (OCO) mission (Fig. 2 is computed at the exquisite spectral resolution

OCO’s instrument). Unfortunately, the launch vehicle failed, so we are still looking

forward to the replacement mission (not yet appropriated at the time of writing).



3D Transport of Solar Radiation in Clouds 108

It is interesting to note that OCO’s mission had nothing to do with clouds, and

everything to do with mapping CO2 globally. The only programatic reason OCO had an

O2 A-band instrument was to deliver the CO2 column density as a mixing ratio expressed

in ppm’s, which is the way the green-house gas (GHG) monitoring community likes to

see it (as opposed to g/m2). This is a typical scenario in instrument and algorithm

development, particularly for space, at the cutting-edge of remote sensing science: start

by using something that exists for some other reason, because a new idea will take a

long time to prevail all the way to the powers-that-be for funding decisions.

In the meantime, at least two academic institutions have invested time and effort

to deploy high-resolution O2 A-band spectrometers at ground-based stations. This of

course forces us to work with the light transmitted by clouds. Interestingly, both the

University of Heidelberg (Prof. K. Pfeilstiker, PI) [221, 222, 223] and State University

of New York at Albany (Prof. Q. Min, PI) [224, 225, 226, 227] teams have focused

their A-band research on assessing the spatial complexity of clouds rather than the

remote sensing tasks described above. This is a good thing because we recall from

Section 4 that the 2nd-order temporal moment of the transmitted Green function,

〈(ct)2〉T , adds nothing new to the information conveyed by the 1st-order moment, 〈ct〉T ,

since their ratio is essentially constant across variations of τ ; see (99)–(100) and Fig. 10.

These teams both started with studies of 〈ct〉T and moved on to 〈(ct)2〉T with upgraded

resolving power. Overall, the better the spectral resolution and, just as importantly,

the out-of-band rejection of the slit function, the more pieces of path length information

that can be inferred [224].

To this pair of institutions, we need to add to the roster a National Oceanic

and Atmospheric Administration (NOAA) team that made a successful foray into

this research area. Interestingly, Portmann et al. [228] used the weaker O2 B-band

(∼687 nm) and relatively low-resolution, but good enough to extract the mean path

length. Also, their focus was on completely overcast skies and they therefore reached

very good agreement between their observed values of τ and 〈ct〉T with straightforward

1D RT predictions.

Because 〈(ct)2〉T ∝ 〈ct〉2T , a ground-based A-band instrument in a cloud remote

sensing mode limited to single/unbroken layers, must be used in synergy with one or

more ancillary cloud-probing sensors. This includes the new use for the solar background

in MPLs to determine τ from Izen, as explained in §3.2. It also includes the simple

NFOV radiometers that can be used to derive H using (98), as explained in §8.1.2, and

the raw data may even be sampled from the A-band instrument at the non-absorbing

wavelengths (used otherwise only to normalize the radiances within the absorption

band). We recall here that this last option avoids the use of calibration-sensitive

algorithms that require angularly-integrated T (τ ; µ0) or -sampled πIzen(τ ; µ0)/µ0F0 to

derive τ . At any rate, given H (e.g., from a NFOV) or τ (e.g., from an MPL), A-

band will give the other cloud parameter through the observed value of 〈ct〉T and the

prediction for it in (99), or a refinement that accounts for oblique collimated illumination

and/or stratification.
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In terms of A-band data analysis, both the Heidelberg and SUNY-Albany groups

used a compromise between the two approaches described above. They used a nonlinear

fit in Laplace space. However, rather than ODE solutions with embedded cloud

parameters {H, τ}, they used the Laplace transform of the Gamma distribution in (109),

but for random variable ct instead of τ , i.e.,

P̃ (s/c) =
1

(

1 + 〈ct〉T s/c
a

)a (152)

where s/c is identified with κν . This is like its Fourier-space use in the NIPA (§7.2.1), but

with the two first moments of path ct rather than horizontal transport ρ. In this case,

the parameters to determine numerically by fit are 〈ct〉T and a, where the latter value

immediately yields the interesting ratio υ = 〈(ct)2〉T/〈ct〉2T (through a = (υ2 − 1)−1).

With this access to 〈ct〉T and 〈(ct)2〉T , the Heidelberg and SUNY-Albany groups

noticed that the empirical relationship between 〈ct〉T and τ undergoes a qualitative

change when the cloudy skies go from a single unbroken layer to a complex scene with

multiple and/or broken layers. For a given τ (obtained by some other means), 〈ct〉T
is radically reduced by 3D RT effects. This is as predicted in §§5.1.2–5.1.3 and other

theoretical studies, most notably by Stpehens et al. [229, and references therein]; these

last authors made extensive use of time-dependent MC methods applied to specific

realizations of fractal or data-based stochastic cloud fields.

The Heidelberg group in fact adopted the anomalous diffusion (mean-field 3D

RT) model, find that the vast majority of cloudy skies had effective Lévy indices α

between 1 and 2 [222, 223], where the upper bound only corresponds to the standard

1+1D RT model. They also found that the ratio
√

〈(ct)2〉T /〈ct〉T was essentially

independent of both τ (as predicted for slab clouds using PDEs) and α (the more-

or-less chaotic cloudiness). Figure 39 illustrates this interesting finding by Scholl et

al. [223] that challenges current models. Davis’ recent mean-field theory based on

anomalous transport [54] generalizes the anomalous diffusion model and explains the

constant ratio, but it is just a MC-based computational model that uses an ad hoc

substitution of exponentially distributed steps with a tunable power-law. Analytical

solutions leading to predictions for prefactors and pre-asymptotic corrections, as were

obtained for the normal diffusion model, are of course desirable; they may be obtainable

following the formalism of Buldyrev et al. [230] based on pseudo-differntial operators

(i.e., fractional derivatives).

In summary, there are basically two cloud-probing functions for hi-res O2 A-band

spectroscopy depending on sky conditions. If the cloud structure is simple, near plane-

parallel single layer, then A-band spectrometry is a cloud remote sensing technique

bringing more or less information to the table depending on the vantage point: Are

we looking at reflected or transmitted sunlight? If the cloud structure is complex, with

either or multiple/broken layers, then (1) A-band responses can detect it and (2) A-band

signals can help to assess—and maybe parameterize—the 3D RT effects.
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Figure 39. MMCR transects and O2 A-band products for the evolving cloud sky

over Cabauw (NL) on 11 May 2003. The left-hand panel shows the structure of clouds

according to the collocated MMCR as a function of time, roughly for 1 hour. The scene

is color-coded for three successive periods where the clouds go from two solid layers to a

more and more broken structure. The upper right-hand panel shows 〈ct〉T /H (H being

the thickness of the whole cloud system), from the 2nd-generation U. of Heidelberg O2

A-band spectrometer as a function of scaled optical depth τt = (1−g)τ (obtained from

other collocated instruments). Overlaid on the data is an ad hoc hybrid model the

used the prefactor and pre-asymptotic corrections in (95) but the scaling exponent for

τt taken from §5.1.3. The lower right-hand panel shows
√

〈(ct)2〉T /〈ct〉T as a function

of τt for the same observations. We note the essentially constant RMA/mean ratio.

Reproduced from Ref. [223].
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What good is the later function? We must recall that the most challenging case for

radiation budget estimation in a GCM grid-cell is for the shortwave heating rates when

the cloud structure is complex. A-band is after all about how multiple scattering in and

between clouds disrupts the process of gaseous absorption, which is key to climate when

the gas is energetically relevant in the solar spectrum (primarily, H2O and CO2). So it

is clear that, if there is claim that a given GCM shortwave parameterization for cloudy

columns does a good job broadband for all important species, then it should be able to

do so for O2 since it is very well mixed.

Therefore, by slightly tweaking GCM shortwave parameterizations to become

A-band signal predictors (rather than broadband integrators), the O2 A-band’s

strong response to 3D cloud structure can be exploited. By making it a sensitive

diagnostic of 3D RT effects, it can be used to evaluate the performance of GCM

shortwave parameterizations. This activity would normally lead to improved solar

RT parameterizations, up to the point where the weakest link in the GCM physics

is somewhere else, probably in the forecast of cloud amount and optical properties

based on microphysics. Even then, A-band may be able to help by providing a radiative

criterion for what is a good-enough representation of the clouds from the important

standpoint of shortwave gaseous absorption.

8.3.3. Multiple Scattering Cloud Lidar, at Closer Range. Our last technical topic is a

small conceptual extension of cloud remote sensing with space-based/wide-FOV lidar

pioneered with LITE (cf. §8.3.1). If the stand-off distance is not so great, surely there

is a way of directly recording the spatial aspects of the Green function excited by the

pulsed laser beam. We already know from §4.2, that this added information will help

determine the cloud properties of immediate interest {H, τ}.
As far as we know, two groups have worked on this task assuming different stand-

off distances. The NASA–GSFC team (lead by Dr. R.F. Cahalan) developed an

airborne device that operates from ∼10 km above cloud top; it was baptized as the

[cloud] THickness from Off-Beam Returns (THOR) system. The Los Alamos National

Laboratory team (lead by Drs. A.B. Davis and S.P. Love) developed a ground-based

device that operates from ∼1 km below cloud base; it was baptized as the Wide-Angle

Imaging Lidar (WAIL) system. Both projects succeeded at the proof-of-concept level for

nighttime operation [94, 95]. The reciever hardware implementations were very different

at the focal plane as well as the fore-optics. Data analysis procedures were also very

different in philosophy and in execution.

THOR was designed to build an azimthally-integrated profile of the spatial part

of the Green function; it is based on 8 different concentric bundles of fiber-optics that

channel the spatially-partitioned light from the focal plane to as many fast detectors

(designed for otherwise standard lidar work).

WAIL went through two recievers, both being imagers. The first was a special

detector custom-built at Los Alamos National Laboratory (LANL) for Remote Ultra-

Low Light Imaging (RULLI) [231]. It worked well for laboratory mock-ups [232] and
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Figure 40. Observed and predicted spatial Green function, in the near-field. The

color-coded data points are from LANL’s WAIL instrument, collected on March 25th,

2002, at the ARM Southern Great Plains site under overcast skies. The three colors

correspond to the three background-suppression interference filters used to rebuild the

spatial Green function from three successive acquisitions; their angular responses at

the laser wavelength (532 nm) are displayed in the inset. Also plotted is a smoothed

version of the observations from a moving-mean filter, and the signal prediction from

the diffusion-based forward RT model, as optimally fit to the data by varying {H, τ},
using only the θ(ρ) region designated with the double-headed arrow. Reproduced from

Ref. [95].

in the far-field for real clouds [233]. However, it could not cope with the huge dynamic

range, nor was it designed to do so, without a cumbersome system of density filters used

in the deployments. The second receiver was an off-the-shelf gated/intensified CCD

camera that has far more capability than has been harnessed so far; of prime interest

here is the possibility of adaptive exposure times for different different time gates, given

the hugely variable signal levels.

Both WAIL and THOR were fielded at a coordinated campaign in March, 2005,

respectively at and above the DOE Atmospheric Radiation Measurement (ARM)

program’s climate monitoring facility in Oklahoma. An extended stratus layer developed

and was thus probed, from both sides, by MuSCL systems. The objective was to compare

THOR and WAIL cloud property retrievals with those obtained from operational ARM

instruments. The outcome for both systems and data analysis procedures compared
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well with the operational ARM products, and are thus deemed “validated.”

Figure 40 shows one example of how WAIL data was processed. Since WAIL’s

(and, for that matter, THOR’s) time-domain signals are not fundamentally different

from those of LITE, we chose to display some spatial data. Every point corresponds

to the time-integrated signal at each pixel from the gated/intensified CCD plotted as

a function of its distance to the pixel estimated to be where the laser beam hit the

cloud base. The three colors are for three separate background suppression filters used

(see inset); each of the 10-nm bandwidth interference filters also had a characteristic

angular response at the fixed laser wavelength (532 nm) and the three were necessary

to build up the full 53◦ FOV image—in fact “movie,” before the time-integration was

performed. One interesting aspect of the spatial signal displayed in Fig. 40 is that it

is severely truncated. For instance, multiplication by ρ2 × 2πρ, which is preliminary to

estimating 〈ρ2〉R, leads to an increasing curve that levels but does not decay to zero. So

the moment estimation is useless. The cloud was too low or the 53◦ FOV was too small.

That is one of the reasons why it proved important to obtain more approximate but

explicit expressions for the Green functions in space and time [87, 50]; their free (cloud)

parameters could be fit to the space-time data only where it is available. As previously

mentioned, the trick to obtain Fourier–Laplace invertible solutions is to rewrite the

BCs approximately as Dirichlet-type rather than Robin-type. The resulting analytical

prediction for R(ρ) is shown in the figure, as fitted to the data (including an overall

multiplier to account for the lack of calibration).

8.3.4. Multiple Scattering Cloud Lidar (and O2 A-Band), at Large. In view of the many

technological and logistical differences between the LANL and GSFC systems and in the

way their signals were analyzed, one should see their joint successes as an overarching

validation of the whole idea of using direct space-time Green function observation to

probe clouds and retrieve important cloud properties. This successful innovation of lidar

technology adds tremendous capability to active cloud remote sensing. Indeed, standard

(on-beam/single-scattering) lidar cannot penetrate clouds with τ & 3, even after

corrections for multiple forward scatterings that reduce the apparent extinction, and that

is precisely where these off-beam/multiple-scattering lidar systems start performing.

The successful analysis of LITE cloud data surveyed in §8.3.1 adds to this

validation statement, and ipso facto makes LITE a forerunner of emerging concept

we refer generically to as Multiple Scattering Cloud Lidar (MuSCL). Another novel

active technique for probing the bulk properties of clouds was mentioned in the

introductory section, in-situ cloud lidar [20, 21], which was developed at U. of

Colorado and by Stratton Park Engineering Company (SPEC), Inc. (Boulder, Co)

<http://www.specinc.com/>. Its (aslo purely temporal) signal physics are the same

as in THOR and WAIL; it should therefore be considered as part of the same class of

MuSCL techniques. Who cares if the source and sensor are inside the cloud? It is still

a remote detection of presence of cloud boundaries above and below the aircraft, hence

H . The other cloud property it delivers is volume-averaged extinction for the cloudy air



3D Transport of Solar Radiation in Clouds 114

all around the aircraft, in other words, τ/H .

Detractors might point out that MuSCL seems to work only at night. This is only

partially true since an early detection of the diffusion-regime spatial Green function

described by Davis et al. in their 1999 paper [89] was done in broad daylight. Moreover,

there are ideas about how to make WAIL (or THOR) operational in the presence of

sunlight that involve sophisticated filtering techniques [234]. Admittedly, this is a

challenge. In the interim, why not view MuSCL, proven to work at night, and inherently

daytime A-band cloud remote sensing as perfectly complementary?

Finally, detractors might also point out that MuSCL and A-band are competing

with established technologies, both passive and active, in cloud remote sensing that

deliver τ and/or H . Specifically, τ (along with re) is (are) obtained from passive

VNIR observations, both ground- and space-based, while H (along with LWP) is (are)

obtained from active optical and mm-wave methods (combined with passive microwave

radiometry), again both ground- and space-based. First, cloud remote sensing is a

highly nontrivial task and all of the above techniques, including MuSCL (and A-

band), have limitations. In view of the importance of cloud property quantification

in climate and other applications, best to have some redundancy, especially when vastly

different wavelengths are used. In that case, MuSCL (and A-band) gain some weight

because they operate at wavelengths that matter for climate while MMCR and MWR

retrievals necessarily cloud-microphysical assumptions to translate the information from

their native wavelengths into information relevant to solar RT. Second, MMCR amd

MWR technologies are at the “high end:” expensive and, in most cases, require regular

maintenance and the occasional emergency call. The outlook for MuSCL (and A-band)

technology is less intimidating: it is expected to be more cost-effective, robust and

forgiving; in particular, there is little or no need for radiometric calibration.

It is interesting to ask the spatial resolution question about Green function

observation techniques, both passive and active. It is inherently adaptive. Imagine,

for instance, a ground-based MuSCL system like WAIL. Basically, it is the width of the

spatial Green function, which itself depends on {H, τ}, because the retrieval is in effect

for volume-averaged cloud properties. The volume is ∼ H×〈ρ2〉F (H, τ), with F = R for

WAIL and T for ground-based A-band. In any application (such as climate prediction)

where solar RT matters, this is the optimal resolution; the unresolved variability is then,

by definition, incorporated into the Green function measurement.

We cannot close this discussion without mentioning that active Green function

observation with wide-FOV/multiple-scattering lidar has other applications than clouds

in environmental science, and it has analogues in other branches of science altogether.

All that is required really is a highly-scattering optical medium, the instrumentation can

be adapted to a wide variety of scales and levels of access to the medium, starting in the

lab and ending (why not?) with planetary missions. As an example, the THOR team

has proposed to use its technology to probe sea ice and snow cover [235]. Applications

to turbid coastal water also comes to mind.

Since the 1990s, the new medical imaging field of “diffuse optical tomography”
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[236] has gone from the concept to the lab to clinical applications. It is predicated on

the fact that soft tissue is highly scattering in the NIR, but anomalies (small tumors,

aneurysms, and so on) are either absorbing or optically void. With enough sampling of

the space-time Green functions from any number of source and detector positions, one

can reconstruct the medium at a coarse scale that may be sufficient for an improved

diagnostic. This novel and inherently non-invasive tomography was enabled by progress

in computational physics and numerical analysis: there are now extremely fast solvers

for the (3+1)D diffusion equation in arbitrary outer and inner geometry. In this context,

WAIL and THOR are a poor-man’s version of optical tomography suitable for clouds.

Only one sample of the space-time Green function allowed, but it can be assumed that

the only “anomaly” to be located is the absorbing boundary of the cloud opposite

the illuminated one, hence H . And we curious about the volume-averaged scattering

coefficient of the cloudy medium as well, hence σ = τ/H . The strong response of O2

A-band products (i.e., 〈(ct)q〉F for q = 1, 2, 3, . . .) to 3D complexity in cloud structure

is another manifestation of the crude but valuable tomographic capability of radiative

Green function observation.

It is too soon to know how the atmospheric science community at large will

assimilate and use this new kind of information. What we do know, since Section 4, is

that reflected A-band spectra will contain more cloud information than their transmitted

counterparts. Conceivably, one could retrieve {H, τ, ∆, · · ·} or {H, τ, α, · · ·}, referring

to internal structure parameters used in previous subsections. Moreover, when we get

such data from space, we will have global coverage of the daytime hemisphere. And for

the nighttime side of the orbit, a co-manifested MuSCL system (with a FOV similar to

LITE’s) will hopefully be there to pick up the relay.

In view of the technicalities of Green function observation and the ensuing

physics-based data processing, it is very likely that—as in the medical profession for

tomography—there will be a natural separation of labor into subject-matter experts

(remote sensing scientists) and end-users engaged in Earth-science endeavors that are

much bigger than the remote sensing. Each type of individual will be easily identifiable

and each individual will have distinctive passions. These sub-communities will have to

understand intimately each other’s needs and interests if science is to benefit fully from

the new technology.

9. Summary and Outlook

We reviewed the physics underlaying the transport of solar (and some laser) radiation

through the Earth’s cloudy atmosphere. We encountered along the way many

challenging problems stemming from (1) the spatial complexity of real clouds and

(2) the physical complexity of multiple scattering processes. For each problem that

presented itself, we discussed state-of-the-art solutions, emphasizing those that bring

physical insights that can be used again and again. We discovered in particular that

Green functions play a key role in almost every aspect of the phenomenology of 3D
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radiative transfer in and between the clouds, the aerosols, the gasses, and the surface. We

also discovered that, even though the problem at hand is steady-state, time-dependent

radiation transport has proved very helpful. After all, transport of radiant energy

unfolds in space, and time for that to happen is implicit.

One century ago, Peter Debye published a seminal paper [3] on scattering of EM

waves by spheres, one at a time, and this article appeared only a year after the better-

known one by Gustav Mie [2]. Radiative transfer in 1D in the presence of multiple

scattering is older, although maybe not by much, since it can be traced at least back

to Arthur Schuster’s 1905 paper [4] on visibility through fog. At the time of writing,

we cross the symbolic threshold of a half-century of research in 3D radiative transfer

in spatially variable media such as clouds, which started (as far as we know) with

Giovanelli’s landmark 1959 paper [8] applying a perturbative diffusion theory of 3D

radiation transport to plane-parallel media with a regular sine-wave structure.

Taking a historical perspective on this development, we have identified three phases

and the associated thrusts continue to this day:

• First, there was a long period of damage assessment since 1D radiative transfer

had become the de facto standard model in all the application areas, spanning

from solar heating rate estimation for the energy cycle in climate models to the

translation of pixel-scale reflected or transmitted solar radiances into inherent

optical or microphysical cloud properties.

• Then came attempts to mitigate this damage since, realistically, we expect that 1D

radiative transfer is not going away any time soon. At any rate, it’s status will

slowly evolve from being the point of reference, simply because it is so popular, to

being just one possible approximation to 3D reality that happens to simplify the

computations. Enhancements of its range of validity via 3D–1D bias mitigation

will still help in practice.

• Finally, as our understanding of 3D radiative transfer phenomena matures, we

enter a new era where we embrace the spatial complexity and find ways to exploit

inherently 3D radiative transfer processes and thus re-invigorate the science and

technology of cloud remote sensing. We have every reason to believe that both

passive and active modalities will emerge, and we can already detect a trend toward

techniques that avoid the costly and cumbersome need for absolute radiometric

calibration.

At all three levels, the preliminary question about the 3D radiative transfer problem

at hand is whether the spatial variability is resolved or unresolved, given the scale of

interest, which can be either the computational grid constant or the remote sensing pixel

size. Approaches for treating unresolved variability invariably have a stochastic flavor

(and often analytical methods work well), while those we apply to cases of resolved

variability are necessarily deterministic (and often lead to a computational scheme).

As part of a second generation of 3D radiative transfer experts, following in the steps

of pioneers, the present authors are confident that the field has a bright future. There are
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clear signs that the old paradigm grounded in stalwart 1D radiative transfer is waning

and that a new paradigm grounded in theoretical, computational and observational 3D

radiative transfer is gaining considerable momentum.
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List of Abbreviations/Acronyms

nD n-dimensional (n = 1, 2, 3)

n+1D n-plus-one-dimensional (i.e., space-time)

ACE Aerosol, Clouds, and ocean Ecosystem (upcoming NASA mission)

AERONET AEROsol observation NETwork

ARM Atmospheric Radiation Measurement (DOE program)

AOT aerosol optical thickness

ASTER Advanced Space-borne Thermal Emission and Reflection Radiometer (on Terra)

ATBD Algorithm Theory-Based Document

BC boundary condition

BRDF bi-directional reflectance distribution function

CCN cloud condensation nuclei

CERES Clouds and the Earth’s Radiant Energy System

CRM cloud resolving model

Ci cirrus
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Cu cumulus

CWC condensed/cloud water content

CWP condensed/cloud water path

DOE US Department of Energy

EarthCARE Earth, Clouds, Aerosols, and Radiation Experiment (ESA-JAXA mission)

EM electro-magnetic

ERBE Earth Radiation Budget Experiment

ESA European Space Agency

FIRE’87 1987 First ISCCP Regional Experiment

FOV field-of-view

GCM global climate model

GHG green-house gas

GLAS Geoscience Laser Altimeter System

GSFC Goddard Space Flight Center (NASA center)

GWTSA Gamma-weighted two-stream approximation

ICA Independent Column Approximation

ICESat Ice, Cloud and land Elevation Satellite

IPA Independent Pixel Approximation

IR infra-red

ISCCP International Satellite Cloud Climatology Project

IWC ice water content

IWP ice water path

JAXA Japan Aerospace eXploration Agency

LANL Los Alamos National Laboratory (part of DOE complex)

LEO low-earth orbit

LES Large-Eddy Simulation

LIDAR LIght raDAR

LITE Lidar-In-space Technology Experiment

LWC liquid water content

LWP liquid water path

MC Monte Carlo

McICA Monte-carlo ICA

MFP mean-free-path

MISR Multiangle Imaging Spectro-Radiometer (on Terra)

MMCR mm-wave cloud radar

MMF multi-scale modeling framework
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MODIS Moderate Resolution Imaging Spectro-radiometer (on Terra and Aqua)

MPL Micro-Pulse Lidar

MTI Multispectral Thermal Imager

MuSCL Multiple Scattering Cloud Lidar

MWR microwave radiometers

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NDCI Normalized Difference Cloud Index

NDVI Normalized Difference Vegetation Index

NFOV narrow FOV

NIPA Nonlocal IPA

NIR near IR (spectrum)

NOAA National Oceanic and Atmospheric Administration

OCO Orbiting Carbon Observatory

ODE ordinary differential equation

PDE partial differential equation

PDF probability density function

RADAR RAdio-frequency Detection And Ranging

RMS root-mean-square

RT radiative transfer

RULLI Remote Ultra-Low Light Imaging (a special LANL sensor)

SNR signal-to-noise ratio

SORCE SOlar Radiation and Climate Experiment

Sc stratocumulus

SF (2nd-order) structure function

SHDOM Spherical Harmonics Discrete Ordinates Method

St stratus

SWIR short-wave IR (spectrum)

SZA solar zenith angle

THOR THickness from Off-beam Returns (an airborne MuSCL system)

TIR thermal IR

TM Thematic Mapper

TOA top of atmosphere

UAV unmanned aerial vehicle

UV ultra-violet (spectrum)

Var Variance
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VIS visible (spectrum)

VNIR visible to near IR (spectrum)

VZA viewing zenith angle

WAIL Wide-Angle Imaging Lidar

WRF Weather Research and Forecasting (NCAR community) model
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